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1. Summary 
 

Increasingly pervasive deployment of AI systems, often building upon machine 
learning, have highlighted the urgency of enforcing the principles of Trustworthy 
AI to make these systems work for the good of the people and society. Achieving 
this goal requires societal and policy actions, but also research in technologies and 
social principles that enable reaching these goals.  

The European Union has tasked the ELSA consortium to build a network of excel-
lence on research in secure and safe artificial intelligence (AI). ELSA is a virtual 
centre of excellence that builds upon the ELLIS network and spearheads efforts in 
foundational safe and secure AI methodology research addressing three major 
challenges: The development of robustness guarantees and certificates, privacy-
preserving and robust collaborative learning, and the development of human con-
trol mechanisms for the ethical and secure use of AI with a focus on use cases 
health, autonomous driving, robotics, cybersecurity, media and document intelli-
gence.  

ELSA is taking a foundational and interdisciplinary approach to these challenges 
that are characterised and outlined by this Strategic Research Agenda. The 
ELSA’s approach is characterised by several cornerstones: 

Threat Modelling and Risk Analysis: Methods and solutions are based on rigorous 
definitions of threats and risks. Only once threats and risks are characterised, well 
defined statements of properties like robustness or privacy can be given. This is 
foundational and best practice in domains like cybersecurity and needs adoption 
in machine learning (ML) and AI – in particular once adversaries need to be con-
sidered. 

Striving for foundational research, guarantees, insights: In order to innovate in 
compliance with European values, methodological research plays a key part in 
building trustworthy AI/ML applications and systems. Such advances should have 
their footing on rigorous and foundational research, so that trust in the resulting 
technologies is sustained and not eroded by false promises. 

Interdisciplinary aspect: The success of arriving at Secure and Safe AI technology 
hinges on the capability of integrating knowledge and insights far beyond the 
core AI/ML domains. On a more technical dimension, e.g. formal and symbolic 
methods from verification over cryptography to cybersecurity play key roles. On a 
less technical dimension, e.g. ethics, legal and human factor research are indis-
pensable. 

System view – MLTrustOps: We need to arrive at a holistic view of the design, 
processing, life-cycle, and impact of AI/ML systems in order to arrive at security 
and safety properties. Hence, we are proposing MLTrustOps to include all relevant 
aspects into an inclusive view of AI/ML systems and applications. 

Governance and Legal Aspects of Socio-technical Systems: With the realisation 
that AI/ML systems do not only become part of our IT landscape but also form 
socio-technical systems that are increasingly deeply ingrained in our society, we 



ELSA  Lighthouse on Secure and Safe AI  

 
  4 of 52 
 

need to realise the profound effect. Governance and legal aspects need not only 
ensure compliance but well being of the whole society and aspiring for common 
good. 

Understanding inherent limitations and tradeoffs in Trustworthy AI: While the 
focus of research and innovation needs to be developing foundations and solu-
tions to the most pressing challenges, it is equally important to shed light on in-
herent tradeoffs and potential impossibilities. These can inform technology as well 
as the public discourse and avoid false promises. 

Openness, Transparency and Accountability: An Open Source approach is a key 
ingredient towards a transparent and accountable approach to AI development 
that fosters safety and security – in particular in the context of foundation and 
large language models.  

Beyond these guiding principles we define 3 main Grand Challenges as part of 
this Strategic Research Agenda that also targets research towards key Use Cases 
measured by Benchmarks1: 

Grand Challenge – Technical Robustness and Safety: Current AI systems suffer 
from several fundamental issues undermining their trustworthiness, and thus 
preventing their adoption in cybersecurity-related and safety-critical applications. 
The first grand challenge formulated within ELSA aims to overcome these issues 
by developing new methods for creating safe, robust, and resilient AI systems, 
while considering specific threat models and practical attacks for the applications 
at hand. 

Grand Challenge – Robust Private Collaborative Learning: Modern machine 
learning depends on ever larger data sets collected from many sources. Our aim 
is to improve privacy by enabling flexible distributed learning with formal guaran-
tees for preservation of data subject privacy and robustness to adversarial manip-
ulation of learning. 

Grand Challenge – Human Agency and Oversight:  Machine learning models 
need to work for the society and its individuals. From the technical aspect, we im-
prove transparency of ML models, particularly those utilising deep learning. From 
ethical, legal and regulatory aspects, we address the problems of AI assurance and 
meaningful human oversight embedded within a regulatory governance regime.  

Outlook: While the research community has already achieved significant progress 
along this research agenda, there are equally significant gaps to close in order to 
provide key methodology and deploy them in practice. The recent advances and 
deployments of Large Language Models amplify the shortcomings and needs for 
Secure and Safe AI. AI remains a technology with substantial risks and it is on us 
to innovate in compliance with our societal values and decide where and how to 
use it in order to leverage its potential for societal good. We need a decisive and 
sustained investment in order to take leadership, lay the foundations for the fu-
ture, and shape this technology in a European understanding. 

 

1 https://benchmarks.elsa-ai.eu/ 

https://benchmarks.elsa-ai.eu/
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2. Scope and Problem 

Contemporary developments in Artificial Intelligence (AI) affect a number of ques-
tions of human activity, which creates new risks and opportunities. While the op-
portunities include multiple potential and real benefits to society through the use 
of digital technologies and automatisation, the risks include threats to safety and 
security, erosion of privacy and lack of transparency as well of human agency and 
oversight in ethical, legal and regulatory forms. In this document, we link these 
fundamental problems through the approach, accepted by ELSA, to the Strategic 
Research Agenda (SRA).  

The above mentioned problem encompasses multiple aspects: 

- Robustness, safety and security: It is becoming increasingly evident that 
current deep learning systems suffer from several fundamental issues, in-
cluding a lack of robustness guarantees and minimal resilience against in-
put data perturbation, which create safety and security risks. They reinforce 
biases present in data. All of these technical challenges can bring substan-
tial harm for the society 

- Privacy: Modern AI and deep learning technologies depend on massive 
amounts of data, often about individuals. These data can create benefits for 
individuals and society, but their misuse can create digital harms 

- Transparency, human agency, oversight: Modern AI technologies, in many 
cases, would only bring necessary benefits if their operation is transparent 
for analysis by humans. This complements the challenge of safety and se-
curity mentioned above. In addition to this, robust technical standards will 
not deliver safe and secure AI in Europe unless and until they are embedded 
within a legitimate and effective governance architectures that provide 
meaningful human oversight that is demonstrably in accordance with core 
European values: namely, respect for democracy, human rights (including 
the protection of safety and security) and the rule of law.  

Solving these challenges is linked to a number of initiatives which are at the fore-
front of attention of the European Union through multiple pathways: legal, such 
as the AI Act; technical and scientific, such as European Networks of Excellence in 
AI. These aspects should be addressed through theoretical as well as empirical 
research. Due to these reasons, the ELSA network promotes the vision of address-
ing the aforementioned challenges of safe and secure AI through the link be-
tween the challenges and practical use cases, linking industry-driven practical de-
mands and academic research.  

This vision is grounded on solid theoretical and empirical foundations, accepted 
by the wider AI community. The NIST glossary2 defines AI as an “Interdisciplinary 

 

2 https://airc.nist.gov/AI_RMF_Knowledge_Base/Glossary 
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field, usually regarded as a branch of computer science, dealing with models and 
systems for the performance of functions generally associated with human intel-
ligence, such as reasoning and learning”. Nowadays, it is closely related to ma-
chine learning (ML) which is defined in the same glossary as “A general approach 
for determining models from data”. At its core are methods for inductive reason-
ing that aim to discover general principles from observational data. This data-
driven approach has been very successful in recent years. Often algorithms are 
rather generic, but the resulting functionality is modulated and determined by 
the data. Such emphasis on the data also brings about many issues as we will dis-
cuss below. Deep learning is a particularly successful branch of ML, which lever-
ages multi-level representations of data, providing, often through millions or bil-
lions of optimisable model parameters, a powerful mechanism to address funda-
mental problems of AI. 

Beyond the broad scope of methodology that is grouped under the umbrella of AI 
and ML, the goals and objectives are also increasingly broad. Unfortunately, these 
are frequently not made explicit and hence very different techniques and ap-
proaches are discussed indiscriminately. One very broad categorisation that can 
provide guidance here is provided by Russell and Norvig3. AI systems can be de-
signed and distinguished by their goal and objective along two key dimensions. 
First, the objective can be either to mimic humans or follow a certain specified 
rationale or logic. Second, the goal can be either determined and evaluated by a 
certain behaviour of a system or the underlying reasoning process. This categori-
sation provides four quadrants of prototypical AI systems: 

Human-Like Reasoning Rational Reasoning 

Human-Like Behavior Rational Behaviour 

 

E.g. symbolic, deductive reasoning systems would fall into the category of ra-
tional/logical reasoning while many of today’s ML approaches aim at mimicking 
human-like behaviour. Of course hybrid approaches are being actively explored 
and AI/ML approaches rarely implement the extremes of this taxonomy. 

Development and expansion of new deep learning techniques has made it possi-
ble to solve many decision related problems in ways unimaginable just a few years 
ago. However, such a fast move from fundamental and applied  research into com-
mercial products and government services has created a range of problems which 
can be broadly attributed to interaction between technology and society.  

 

Important problems include: 

l the need to align with ethical principles (including human rights);  

 

3 Russell, Stuart, and Peter Norvig. "Artificial intelligence: a modern approach." (2002). 
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l the need to conform with legal duties and obligations, and risk of under-
mining the rule of law and democracy; 

l the need to provide interpretable and explainable models; 

l the need to ensure causality of the decisions made by ML models; 

l the need for the system to be robust in a technical or organisational sense; 
and  

l ensuring safe and secure execution of ML models, as well as their robust-
ness. 

However, ensuring that these principles apply only to the models is not sufficient. 
It includes a much wider scope including provenance of data and ensuring the 
ethical and legal use of the developed technologies. 

The recent appearance of complex foundation models trained on large amounts 
of data, such as large language models (LLMs) and generative models for images 
and video further highlighted the problems of data provenance. Despite the scale 
of these data collection, it is important that these data are collected in an ethical 
and legal way. That includes meeting the requirements of GDPR, assuring that 
these data lead to data reflective of the values of fairness and inclusivity.  

The incorporation of these values would not be possible without an open source 
approach, which ensures transparency and accountability and therefore, ensures 
that the foundation models work for the society.  

These, more generic challenges are increasingly important in the context of the 
recent developments of the technology as well as in the context of the European 
values and, more generally, the values of democracy and liberty of citizens.    

  



ELSA  Lighthouse on Secure and Safe AI  

 
  8 of 52 
 

3. European Vision on Trustworthy AI and the  
EU AI Act 

Figure 1 - Components of the European model of Trustworthy AI. 

The High Level Expert Group in AI set up by the European Commission has laid 
out a European Vision of Trustworthy AI that should be lawful (respecting all ap-
plicable laws and regulations), ethical (respecting ethical principles and values), 
and robust (both from a technical perspective while taking into account its social 
environment). AI and ML models are being deployed widely with success and 
could provide a key competitive advantage to the European economy. Unfortu-
nately, the same abilities that make AI able to bring social and economic benefits 
may also be used offensively, and negatively affect society. For example, the ability 
of AI to mimic human behaviour might induce some individuals to excessively 
trust its predictions, even when the model may be wrong. This may potentially 
cause harm to them or others. AI suffers, in fact, from several fundamental issues 
that can accidentally lead to unwanted system behaviours.  

The European Union is interested in preserving its technological leadership and 
allowing its citizens to benefit from AI. However, ensuring that these technologies 
are developed according to human-aligned values, fundamental rights, and prin-
ciples is utterly important. For these reasons, the European Union has been work-
ing on developing the Artificial Intelligence Act to regulate the usage of AI in dif-
ferent contexts. In particular, the AI Act subdivides AI-based applications into cat-
egories depending on the harm they may cause and proposes to regulate each 
category with a series of requirements which the system should be compliant 
with. AI-based applications are subdivided into: (i) unacceptable risk, (ii) high risk, 
(iii) low risk, and (iv) minimal or no risk. 

The proposal considers the risk to be unacceptable for applications that may vio-
late European values, for example, by violating human rights. They include appli-
cations that may alter a person's behaviour in a way that can cause harm; social 
scoring for general purposes done by public authorities; and the usage of "real-
time" remote biometric identification systems for law enforcement in publicly ac-
cessible spaces, excluding some exceptions, e.g., border control. The usage of AI 
in applications with an unacceptable risk would be forbidden. 
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Applications are proposed to be considered high-risk when they can create a high 
risk to the health and safety or fundamental rights of natural persons. Some ex-
amples of high-risk AI systems include those intended to be used as safety com-
ponents of products, e.g., medical devices and systems used in certain fields, in-
cluding biometric identification for border control and law enforcement. The us-
age of AI in high-risk applications would be allowed, but they must be compliant 
with certain mandatory requirements and an ex-ante conformity assessment. 
These requirements are detailed below. 

l Equality. Individuals with similar characteristics should receive the same 
response from the system regardless of their gender, ethnicity, and other 
characteristics that, for ethical reasons, should not affect it. 

l Transparency. The system should provide the user with information about 
the process used to provide the output. This allows humans to oversee the 
process and spot eventual errors in the system's output. 

l Robustness, Safety, and Security. The AI/ML-based system should be se-
cure to deliberate attacks and preserve safety of its users and the environ-
ment in safety-critical tasks. This amounts to adopting secure-by-design 
countermeasures and providing robust decisions even in the presence of 
unexpected inputs or deliberate attempts aimed to compromise its integ-
rity, availability, or the privacy of its users.  

Applications considered at low risk are proposed to only have a transparency re-
quirement. This means they should notify humans that they are interacting with 
an AI system unless this is evident, and eventually disclose that the system's out-
put has been artificially generated or manipulated. 

Finally, minimal, or no-risk applications do not have any requirements. 

Risk Category Application Examples Requirements 

Unacceptable 
risk 

Social scoring Prohibited 

High-risk Recruitment, medical 
devices 

Permitted but subject to equal-
ity, transparency, robustness, 

safety, and security obligations, 
and ex-ante conformity assess-

ment 

AI with specific 
transparency ob-

ligations 

Impersonation (bots) Permitted but subject to infor-
mation/transparency obliga-

tions 

Minimal or  
no risk 

  None 
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The desiderata specified in the EU AI Act for all the risk levels are clear and essen-
tial to create systems that comply with European values. However, developing AI-
based systems for high-risk applications that meet the aforementioned require-
ments presents different technical challenges. One of the biggest issues hamper-
ing the development of systems compliant with these requirements is the lack of 
secure and safe AI technologies that we can trust in real-world applications. 

It is well-known that the security of AI and of current deep learning models can 
be easily undermined at training and test time. For example, by slightly altering 
the systems' input, attackers can compromise the system to behave as they de-
sire, with unexpected potential consequences for the safety of the system users 
(e.g., when operating in safety-critical environments). However, even if we con-
sider state-of-the-art defensive measures and methodologies, it is still unclear 
whether they really enable developing and maintaining secure and safe AI-based 
systems in real-world applications. 
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4. ELSA Approach to Secure and Safe AI 

ELSA addresses important aspects of safe and secure AI. The topics of research are 
organised in Grand Challenges measured by Benchmarks4 and cover the follow-
ing aspects: robustness and safety, privacy and infrastructure, as well as human 
agency. Before we go into the details of the Grand Challenges, we define over-
arching principles of our approach, that we outline here first: 

4.1. Threat modelling and risk analysis 

In contrast to the vast part of machine learning that to a large extent is motivated 
by expected risks, systems that are deployed in the real-world become part of an 
attack surface and face adversarial attacks. In such situations, an attacker might 
seek to systematically exploit worst case behaviour that deviates significantly 
from the average behaviour of the system.  

Such setting often results in more challenging learning problems and ensuring 
robustness in such worst case situations often require different methodology. Un-
fortunately, there are prominent cases where these issues are addressed by heu-
ristic or empirical approaches. These lead then to “arms race” or “cat and mouse 
game” settings, where attacks and defences try to outcompete each other. While 
in a few cases this is unavoidable, it is neither satisfying nor sustainable, as any of 
such solutions might be broken in the future and therefore any promises of trust-
worthiness of the system will not hold. 

Hence, we strive for rigorous approaches that can eliminate whole types of attacks 
and vulnerabilities for good – in order to allow for guarantees of the trustworthi-
ness of the system wherever possible. This is only facilitated by following para-
digms and ideas that are well established in e.g. the cybersecurity and safety re-
search communities. There are at least two key ingredients: 

Threat model: The capabilities of an attacker and defender need to be clearly for-
malised. Only then can we reason in a rigorous way about solutions that can rule 
out classes of attackers. In addition, this methodology makes assumptions explicit 
and provides systematic progress in these challenging domains. 

Risk analysis: In many situations, we are faced with the challenge that an absolute 
notion of security, privacy, or safety is not achievable in any practical and mean-
ingful way. Here, we need to provide technical means that address threats that 
are relevant so that we can provide appropriate measures and protection to reach 
our goal. This technological approach is also compliant with many legal definitions 
that require appropriate protection. 

 

4 https://benchmarks.elsa-ai.eu/ 

https://benchmarks.elsa-ai.eu/
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4.2. Striving for foundational research, guarantees, and insights 

ELSA promotes a strong foundation for trustworthy AI that builds on foundational 
research and formal guarantees, whenever possible. We believe this is essential 
for building truly trustworthy AI that will keep meeting its demands even as the 
world changes, especially in high-risk applications. Formal guarantees are also im-
portant in avoiding arms races of attacks and defences. 

Methods providing formal guarantees are available for many problems encoun-
tered in trustworthy AI. Certifiably robust methods are guaranteed to be robust to 
certain perturbations, meaning for example that such perturbations cannot mis-
lead a classifier5. Byzantine resilient methods for distributed and federated learn-
ing can tolerate a certain number of arbitrarily misbehaving clients6. Differential 
privacy allows proving that the privacy loss from releasing some computation re-
sults is bounded, even against arbitrary future adversaries7. 

While formal guarantees are an important tool, they are not a silver bullet. All 
guarantees depend on a particular formal model of potential adversaries, whose 
realism needs to be considered in light of the threat model. Work on attacks to 
analyse the practical risks is an important complement to formal guarantees. 

Often it may turn out to be impossible to match desired formal guarantees with 
the required level of performance of the system. The next best option is extensive 
and systematic testing, but it is important to understand its limitations: no 
amount of testing can cover all corner cases (such as all traffic situations encoun-
tered by an autonomous vehicle). 

Deployed AI systems act as parts of a larger system. When formal guarantees are 
available, they provide safety in integrating the AI component. When no formal 
guarantees exist, it is possible and often useful to apply other safety engineering 
approaches such as redundancy and monitoring to ensure the reliability of the 
overall system, while ensuring system resiliency and fast recovery when under at-
tack, even one that was not considered a priori. 

4.3. Interdisciplinary aspect 

While this SRA is at its core about AI and machine learning, the previous sections 
have already made clear that the scope of the methodology to achieve the goal of 
safe, trustworthy and secure AI is substantially broader. 

Such solutions can be drawn from core research in AI and ML.  
It is therefore essential to build upon theoretical understanding of key chal-
lenges in the domain. For example, results on convergence rates of learning al-
gorithms can help advance our understanding of robustness and reliability of 

 

5 Cohen, J., Rosenfeld, E., Kolter, Z. (2019). Certified Adversarial Robustness via Randomized Smoothing. In Pro-
ceedings of the 36th International Conference on Machine Learning. 
6 Blanchard, P., Guerraoui, R., Stainer, J., et al. Machine learning with adversaries: Byzantine tolerant gradient 
descent. In Advances in Neural Information Processing Systems, pages 119–129, 2017. 
7 Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In 
Proceedings of the 3rd Theory of Cryptography Conference, TCC 2006. 
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learning algorithms. Another important aspect is causality of the data generat-
ing processes. Such work can be furthered to discover principled ways of recov-
ering relationships between data. Advancement of these techniques is key to-
wards ensuring fairness in AI and ML. 

Beyond the aforementioned aspects, the community has drawn and needs fur-
ther integration with the broader technical research in computer science and 
related fields. It is particularly noteworthy that core methodology that is becom-
ing key e.g. in certification, privacy and robustness has been developed in parallel 
or even prior to the recent advances of AI/ML. For example, formal methods pro-
vide a rigorous way to prove properties about neural networks, e.g. probabilistic 
or exact proofs can be given w.r.t. the invariances of a neural network. Another 
example is cryptography based on information theory which provides principled 
means to information security and confidentiality. Beyond this, it has provided the 
bases of rigorous privacy notions (e.g. differential privacy), that remain valid even 
against arbitrarily strong future adversaries.  

Beyond the disciplines with a technical focus, a number of human-centric disci-
plines are indispensable for Secure and Safe AI to cover the interpretability, ethical 
and legal aspects. Shaping up recommendations to European policy-makers and 
the broader stakeholder community involves building upon current insight into 
regulatory governance and critical algorithm studies. To advance towards the goal 
of safe and secure AI, these recommendations should be guided by understand-
ing how key stakeholders perceive risks and opportunities associated with exist-
ing and proposed legal governance frameworks for data-informed services in Eu-
rope. 

Finally, applying AI methods to practical use cases requires collaboration with ex-
perts and researchers from the application area to ensure that theoretically sound 
research meets the practical expectations. 

4.4. System view: MLTrustOps 

Developing and maintaining a secure and safe AI-based system not only demands 
for an initial, well-designed and documented process, but also for a well-struc-
tured, continuous development and monitoring infrastructure during operation. 
We argue here that the modern development framework known as Machine 
Learning Operations (MLOps) can provide a viable option to implement a trust-
worthy AI/ML continuous development cycle (Figure 2). In particular, MLOps in-
cludes a set of practices and tools that help develop, deploy, and maintain ma-
chine learning models in a production environment, with a high degree of auto-
mation, thereby also minimising the technical debt potentially introduced by the 
use of AI/ML models in more complex system architectures. The MLOps cycle con-
sists of six main steps, as detailed below. 

1. Data Preparation. The data are collected and prepared to be processed by an 
AI/ML model. This step requires identifying the appropriate and reliable data 
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sources, cleaning and transforming the data, and ensuring they are in a format 
that can be used for training. 

2. Model Training. In this step, the model is developed and trained. This requires 
selecting the appropriate machine learning algorithms, tuning the hyperpa-
rameters, and evaluating the performance of the models. 

3. Model Packaging. This step creates a package to ensure the model and the 
datasets used to train it have all the dependencies that need to be available at 
runtime. Thus the model predictions made in the development environment 
are replicable in the production environment. 

4. Model Validation. Once the models are trained, they need to be validated to 
ensure that they are accurate and reliable. This involves evaluating the perfor-
mance of the models on a separate set of data, known as the validation set, 
and refining the model if necessary. 

5. Model Deployment. After the models have been tested and validated, they are 
deployed in the production environment, where they are used to make predic-
tions or decisions. This involves setting up the infrastructure, such as servers 
and storage, and configuring the machine learning models to work with the 
production data. 

6. Monitoring and Optimization. Once the models are deployed, they must be 
monitored to ensure they perform as expected. This involves setting up the 
monitoring infrastructure, such as alerts and dashboards. In this way, if the 
models are not performing as expected, the developers can promptly inter-
vene.  

Similarly to DevOps in software engineering, the MLOps development cycle nei-
ther embeds any security and privacy testing nor any support to develop robust 
and trustworthy models. However, we argue that such dimensions can be easily 
integrated into MLOps, to enable the design of an MLTrustOps framework. 
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Figure 2 - MLTrustOps development cycle. 

The process starts from the definition of legal, ethical, and more practical applica-
tion requirements, along with an in-depth analysis of the potential threats or sys-
tem misuses, as discussed in the previous sections of this document. These re-
quirements should ensure trustworthiness and human alignment. In particular, 
they need then to be formalised in terms of metrics and trustworthiness dimen-
sions that should be integrated during design and system operation. They include 
privacy, fairness, explainability and robustness requirements, among others. As 
shown in Figure 2, we advocate here that the MLOps framework can be comple-
mented by adding three main pillars to support the different design steps and 
encompass the necessary trustworthiness dimensions and metrics, as detailed 
below. 

1. Trustworthy Data-centric and Training Methods. This step amounts to sani-
tising datasets (promoting also data-centric approaches) and learning AI/ML 
models that naturally account for specific trustworthiness dimensions, e.g., 
models that are robust and certifiable against attacks and out-of-distribution 
samples, and also fulfil fairness and privacy requirements (e.g. according to the 
data minimisation principle). Explainable AI/ML methods can also play an im-
portant role here, as they may help debug what AI/ML models learn from data, 
and detect potential problems. 

2. Trustworthy AI/ML Testing. This step aims to automate AI/ML testing and eval-
uation considering the trustworthiness requirements elicited in the previous 
phases, similarly to what is normally done with unit testing and integration 
testing in software engineering. Unit testing would amount to testing the 
AI/ML model in isolation against the identified threats or potential corner cases 
which may be incurred during operation (e.g., detecting specific biases after 
training), while integration testing would amount to testing the AI/ML model 
when operating in more complex systems and interacting with other non-ML-
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based components. However, further research is needed to better understand 
how trustworthy AI/ML testing can be brought to a higher level of automation.  

3. Trustworthy AI/ML Monitoring. This step amounts to enabling detection of at-
tacks which may be executed during operation and, more generally, system 
malfunctioning (e.g. distribution shifts that may induce unfair behaviours), al-
lowing a timely reaction. This monitoring process aims to speed up reaction to 
observed threats, ensuring resilience and prompt recovery of the whole system 
under and after attack, while the other two pillars of the MLTrustOps frame-
work ensure a more proactive approach against potential threats and issues 
that may be incurred during operation.   

While this framework helps us reason on how to protect AI/ML models and imple-
ment trustworthiness dimensions within them, it is also worth remarking that 
there are complementary protection measures which should always be consid-
ered. In particular, AI/ML models are themselves software components and, as 
such, the libraries used to implement them should undergo the standard assess-
ment and testing procedures which software is normally subject to, e.g., security 
scanning to detect the presence of software vulnerabilities, and functional testing 
to assess the scalability of the overall system. Furthermore, AI/ML models are nor-
mally used in more complex systems, including other AI/ML models as well as non-
ML components. This demands not only for integration and regression testing of 
the system after AI/ML model updates, but for a continuous and managed valida-
tion process aimed to reduce any potential high technical debt induced by the 
presence of AI/ML models. Finally, it is also worth noting that AI/ML models may 
not be bulletproof and guaranteed to be trustworthy by design under all condi-
tions, e.g., there may be failure modes which are impossible to encompass during 
system design (i.e., the so called unknown unknowns, to paraphrase the former 
United States Secretary of Defense Donald Rumsfeld). In these cases, exploiting a 
more holistic and traditional systems perspective, from an engineering viewpoint, 
may actually help us to design more reliable and safe AI/ML-based systems, e.g., 
by exploiting redundancy of sensors and complementary control and decision-
making mechanisms, which may include both human and technical elements. 

4.5. Socio-Technical View of Governance and Legal Aspects of AI 
Systems 

Developing and maintaining integrated governance frameworks to ensure mean-
ingful human oversight which, in turn, will secure and maintain safe and secure 
AI, is a serious and formidable challenge. Addressing it will require the successful 
integration of research from multiple disciplines: from the technical, natural and 
medical sciences, through to the social sciences, law and humanities, in ways that 
can be practically and meaningfully adopted by organisations, groups and indi-
viduals in real-world settings. The embedding of AI into complex socio-technical 
systems that deliver data-driven services in real-time operating at a planetary 
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scale in ways that directly affect the safety, rights and well-being of human com-
munities and their environment generate novel technical, legal, ethical and gov-
ernance challenges. 

The primary focus of the research is concerned with unresolved challenges sur-
rounding the capacity of humans to understand, interpret and comprehend the 
underlying logic of an output produced by a ML model, particularly those which 
utilise deep learning. If advances in ML and AI are to deliver the promised benefits 
of enabling and enhancing human well-being and for the benefit of the many and 
not merely the few, then they will need to operate in real-world settings in con-
junction with individuals, organisations and communities of all shapes, sizes, and 
capabilities, including society’s most vulnerable. Unless those who are directly and 
indirectly affected by and interact with socio-technical systems that rely on ML 
models can understand why they generate particular outputs (both in general 
sense and in specific circumstances) and can consistently rely on those outputs 
being produced in accordance with their understanding and legitimate expecta-
tions of how those outputs are generated and the impact that they produce, then 
they will not be capable of understanding how these systems operate.  Nor will 
they be in a position to reliably anticipate how they will operate in future. This, in 
turn, makes the attainment of meaningful human oversight impossible, creating 
serious dangers that these systems will fail consistently to operate in accordance 
with fundamental human values upon which democratic societies claim their al-
legiance and upon which they are rooted. Accordingly, until the underlying ML 
models can be made sufficiently interpretable and comprehensible to human us-
ers so that they acquire the level of understanding necessary for meaningful hu-
man oversight, the embedding of these models within socio-technical systems 
deployed in real-world settings cannot be characterised as ‘safe and secure AI’. 

Although much attention has been devoted to the so-called ‘ethics principles’ that 
should inform and guide the development and deployment of AI technologies, 
relatively little attention has been given to the governance institutions, oversight 
mechanisms and their legal status and interaction with other legal norms and in-
stitutions. Yet if these laudable principles are to be given concrete expression in 
the development and deployment of real-world AI technologies, then a vital and 
unresolved challenge concerns the need to ensure that we have in place practical, 
effective and legitimate integrated governance mechanisms and institutions that 
are capable of providing meaningful human oversight of these socio-technical 
systems.  Recent legal and policy reform proposals (including the proposed EU AI 
Act) appear to place considerable faith in the form of technical standards, certifi-
cation and assurance mechanisms established and provided by non-state actors. 
Yet the efficacy and legitimacy of these regulatory governance mechanisms, par-
ticularly in ensuring the ‘quality’ of data-driven services to ensure safe and secure 
AI, remains unknown.  
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4.6. Understanding inherent limitations and tradeoffs in 
Trustworthy AI 

Many frameworks on Trustworthy AI, including the one defined by the EU High-
Level Expert Group on AI, list a number of key requirements: human agency and 
oversight; technical robustness and safety; privacy and data governance; trans-
parency; diversity, non-discrimination and fairness; environmental and societal 
well-being; and accountability8. 

These provide a powerful list of properties we expect trustworthy AI systems to 
satisfy. Unfortunately these properties carry inherent limitations: given a finite col-
lection of training data, it may be impossible to combine high utility of the system 
with strong guarantees of robustness or privacy, for example. 

In many cases, there is a trade-off between the utility of the system, such as its 
accuracy, and the degree to which different dimensions of trustworthiness are 
satisfied. For example, requiring greater robustness or privacy will in most cases 
necessarily reduce the system’s utility in its main task. Similarly, there is a funda-
mental trade-off between fairness and average utility. 

To make things even worse, many of the properties are contradictory and cannot 
be achieved at the same time while maintaining non-trivial utility of the system. 
For example, robustness can be at odds with fairness9, while privacy can be at 
odds with transparency10 and fairness11. These examples highlight need for re-
search actions to enable the realisation of the Guidelines for Trustworthy AI: 

l Fundamental research on the theoretical limits of different dimensions and 
their interactions to establish what is possible. 

l Collaboration between diverse technical and non-technical communities to 
develop an understanding of which technically feasible options are best for 
the society. 

Understanding the limitations is also important for both avoiding false promises 
as well as avoiding impossible requirements. 

4.7. Openness, Transparency, and Accountability 
An open and transparent development of AI and machine learning is key to safe 
and secure technologies. Unfortunately, the current development of foundation 
and large language models is largely driven by industry players that did not pro-
vide the level of openness, transparency, and accountability that supports re-
search and an overall trustworthy approach. 

 

8 Ethics Guidelines for Trustworthy AI by the High-Level Expert Group on AI. https://digital-strategy.ec.eu-
ropa.eu/en/library/ethics-guidelines-trustworthy-ai  
9 H. Xu, X. Liu, Y Li, A. Jain, J. Tang. To be Robust or to be Fair: Towards Fairness in Adversarial Training. In Pro-
ceedings of 38th International Conference on Machine Learning (ICML 2021), 2021. 
10 R. Shokri, M. Strobel, Y. Zick. On the Privacy Risks of Model Explanations. In Proceedings of the 2021 AAAI/ACM 
Conference on AI, Ethics, and Society (AIES 2021), 2021. 
11 E. Bagdasaryan, O. Poursaeed, V. Shmatikov. Differential Privacy Has Disparate Impact on Model Accuracy. In 
Advances in Neural Information Processing Systems 33 (NeurIPS 2019), 2019. 

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
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ELSA is committed to a mission of bringing open and transparent research to the 
community and connecting to industrial actors in order to improve this situation. 
Below, we highlight key elements why such an approach is not negotiable and 
what is still missing to reach our objectives. 

Impact on Safety and Security: Cryptography community has long established 
openness of algorithms and their implementations as key to security. Research 
has given vital contributions to safety and security of real world systems. Only a 
transparent and accountable approach can develop this synergistic relation. 
Without following this paradigm, society will be exposed to unnecessary risks and 
it will be increasingly difficult to establish trust in these complex systems. 

Digital Sovereignty: We see an emerging ecosystem that is being built around 
key AI technology. Foundation and Large Language Models are a prime example 
of this. Unfortunately, some of these models are owned and hosted by companies 
and are only available via API access. The model provider will be able to monitor 
all use of the system, thereby compromising the privacy and confidentiality of 
queries fed to the system. Becoming dependent on such infrastructures can 
threaten digital sovereignty of the EU and its member states. 

Complex Supply Chains: Like in traditional industries, we will see increasingly 
complex supply chains in AI and Machine Learning systems, where systems are 
being built out of components or even systems. Ensuring properties and behav-
iours of such agglomerates and compositional approaches will be hampered by 
opaque and inaccessible systems.  
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5. Grand Challenge: Technical Robustness and Safety 

Data-driven AI systems based on deep learning models have recently recorded 
unprecedented success in many different domains, and they are also being in-
creasingly applied in cybersecurity-related and safety-critical tasks. However, it is 
becoming increasingly evident that current deep learning systems suffer from 
several fundamental issues, including a lack of robustness guarantees, minimal 
resilience against input data perturbation, and a reinforcing effect on biases pre-
sent in data, which could prevent their broad adoption especially in cybersecu-
rity-related and safety-critical applications.  

To overcome these issues, the first grand challenge formulated within ELSA aims 
to develop new methods for creating safe, robust, and resilient AI systems with 
robustness guarantees, and considering specific threat models that allow simu-
lating feasible and practical attacks for the applications at hand, as described in 
the following research challenges. 

5.1. Research Challenges 

5.1.1. Security testing and robustness evaluation 
 
While recent regulations require the development of procedures to assess the ro-
bustness of high-risk AI-based systems, it is still unclear how this should be prac-
tically implemented. On the one hand, formal evaluation methods do not scale to 
more realistic, complex models and application-constraints. On the other hand, 
empirical evaluation methods tend to provide typically an overly optimistic esti-
mate of the actual AI/ML model robustness, and they come with no formal guar-
antees that the analysis is reliable.  
  
Within ELSA, we envision a framework that can be used to assess the robustness 
of AI/ML models, mitigating some of the issues discussed above. In particular, we 
aim to assess security or robustness of a machine-learning model against different 
potential scenarios, following a what-if analysis. 
The potential scenarios, including different threats or corner cases which may be 
encountered during operation, need to be identified a priori, performing an ap-
propriate risk analysis and threat modelling of the system at hand. While it is im-
portant to evaluate the performance of the model on in-distribution test samples, 
we claim that also modelling its behaviour on out-of-distribution inputs and sce-
narios is highly relevant especially in security-sensitive and safety-critical applica-
tions. Indeed, after deployment, AI-based systems can face situations that are dif-
ferent from the ones considered at training time. 
 
Out-of-distribution samples can be generated artificially to mislead the system 
(i.e., optimising the input perturbation against the target model, as done for ad-
versarial examples), or they can be natural samples that do not belong to the same 
distribution as the training set. For example, for an autonomous driving car 
trained to recognize street signals in a city during sunny and rainy days, the im-
ages acquired in another city or while it is snowing can be considered relevant 
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out-of-distribution samples. The main challenge in testing the performance of a 
system on out-of-distribution samples is that collecting them may be time-con-
suming. Furthermore, it is not even clear how such inputs can be detected; i.e., for 
any given input to a machine-learning model, it is not trivial to understand 
whether it is an out-of-distribution input or whether it can be reliably classified by 
the model. 
 
Even testing the performance against out-of-distribution samples generated arti-
ficially presents some difficulties. Some input perturbations can be modelled 
mathematically (e.g., using distance functions computed between input sam-
ples). In this case, the robustness of some machine learning models can be tested 
using verification techniques, which provide formal guarantees about the sys-
tem's robustness. However, they cannot be applied when the input perturbations 
can not be modelled mathematically or when the system is too complex. In these 
cases, the system can only be tested leveraging empirical methods (e.g., gradient-
based and black-box optimizers). This is closely related to testing software sys-
tems via dedicated fuzzers, which of course have their own limitations and biases. 
Further research is thereby needed to devise scalable approaches that allow eval-
uating the security of state-of-the-art models in a reliable manner. Within ELSA, 
we are developing new approaches based on formal verification, empirical meth-
ods, and their combinations. Given that the current empirical methods to evaluate 
the security of machine learning systems sometimes fail, compromising the relia-
bility of the security evaluation, we have also developed debugging tools that help 
identify common failures in the evaluation process (e.g., failures in the gradient-
based optimization of adversarial attacks). 
  
5.1.2. Robust and certifiable machine learning 
 
The current solutions available to create robust and certifiable machine learning 
models do not scale to complex neural networks and complex natural robustness 
and safety properties. The main challenges are thus to overcome these limits, of 
which we provide a more extensive description in the following, along with the 
directions that can be pursued to overcome them.  
  
Beyond Lp-norm robustness. Most certification algorithms consider bounded-
norm perturbations. While these sometimes suffice as proxies for imperceptible 
image modifications, tasks such as object detection rely on different similarity 
measures, for example, cosine similarity for word embeddings and Mahalanobis 
distance for images. It is thus desirable to define measures and certification algo-
rithms for semantic robustness, considering similarity measures that reflect visual 
or geometric aspects characteristic of the application, such as object movement 
or lighting conditions. More generally, robustness evaluation frameworks for more 
complex properties induced by the use cases are needed. 
 
Beyond supervised robustness. Existing robustness formulations focus on the su-
pervised learning setting. However, collecting and labelling large datasets neces-
sary to ensure the high robustness performance is costly and may not be feasible 
in applications characterised by a wide variability of possible inputs. Instead, it is 
desirable to formulate robustness measures and evaluation frameworks directly 
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in some appropriate semi-supervised and unsupervised settings, where the defi-
nition of robustness needs to focus on the quality of the learned representations 
rather than classification (prediction) because of the lack of labels. This may in-
volve working with similarity measures such as Mahalanobis distance and will be 
challenging both theoretically and computationally to achieve provable robust-
ness guarantees. 
  
Certifiable distributional robustness. In many different applications, the system 
can be exposed to a distribution shift. The notion of distributional robustness will 
need to be adapted to such settings so that models not only learn stable and 
meaningful representations that are resistant to perturbations and noise but also 
to distribution shifts, where we anticipate causal reasoning can play a part. The 
challenge here will be theoretical, in how to map the requirements from the use 
cases into problem specification, and then methodological, which will investigate 
appropriate numerical and/or statistical algorithmic approaches to compute cer-
tifiable robustness guarantees. 
  
Scalability. Robustness certification often does not scale to complex networks.   
We will comprehensively investigate and evaluate the scalability of robustness 
certification and evaluation frameworks for typical use cases (such as object de-
tection) with respect to input dimensionality and network depth, and for a variety 
of activation functions. Furthermore, scalability is key to extending certification 
and robustness to include the training process. 
  
Efficiency and precision trade-off. Robustness certifications and evaluation in-
volves a variety of methods, including exact, approximate and statistical ap-
proaches. While exact methods offer completeness, trading off exact precision for 
approximate bounding results in more efficient any time methods, and complete-
ness can be recovered by combining fast approximate methods such as convex 
relaxation with branch-and-bound computation. Statistical methods provide esti-
mates of robustness that may be unsound but fast and, in many cases, sufficient 
for the application being considered. Within ELSA, we will comprehensively inves-
tigate and evaluate the efficiency and precision trade-off of robustness certifica-
tion and evaluation frameworks for typical use cases (such as object detection). 
   
5.1.3. Uncertainty estimation and decision making 
 
The decisions of AI/ML models, including neural networks, are unreliable when the 
input sample is out of the training distribution or corrupted by noise. Estimating 
the uncertainty of their decisions, enables probabilistic reasoning, supporting the 
interactions with humans in the loop and to quantify the risks associated with de-
cisions. Conformal prediction and Bayesian approaches can estimate predictive 
uncertainty and their principles can be used to make deep neural networks more 
robust and reliable. However, their computational complexity often overshadows 
their advantages. Within ELSA, we aim to develop new Bayesian approaches to 
deep learning, assessing uncertainty when transferring models across related 
tasks, and reasoning about uncertainty in data-driven models informed by prior 
knowledge. 
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5.1.4. Relationships among robustness, privacy, explainability and fairness 

The theoretical relations and potential tradeoffs among robustness and privacy, 
fairness, and explainability are still unclear. Fundamental theoretical questions are 
still unanswered, including: how privacy mitigation strategies (e.g., differential pri-
vacy) can affect and be affected by robustness; if robustness can help increase or 
reduce the fairness of a model and if new notions of fairness should be introduced; 
and how robustness requirements can affect, reduce, or improve the explainabil-
ity of a model. 

The main research challenge is thus to understand and investigate how metrics 
that are not technical (like accuracy and computational requirements), but that 
are more related to the notion of trustworthiness in machine learning and then to 
human-oriented metrics (robustness, privacy, fairness, and explainability), are ac-
tually related to each other. In fact, in the past, it has been observed and studied 
that technical metrics (e.g., accuracy) are impacted by trustworthiness metrics 
(e.g., fairness), creating a certain tension, but the relationship among trustworthi-
ness metrics is much less investigated. Recently, it has been observed that when 
multiple trustworthiness metrics need to be optimised, other tensions arise, e.g., 
tension between privacy and fairness, robustness and fairness, and robustness 
and privacy.  

Within ELSA, we will push forward fundamental research in this direction, focus-
ing on establishing a framework able to better understand and evaluate the ten-
sions (e.g., with trade-off bounds) and the possibility of achieving simultaneously 
(e.g., via consistency results) good performances in terms of trustworthiness met-
rics. 

5.2. Further Research Directions 

Building upon the ELSA approach and perspectives, we can envision two main 
additional research directions in the near future towards developing more safe 
and reliable AI/ML models. 

The first is understanding how to systematise and automate the evaluation and 
testing of AI robustness. The techniques existing at the state of the art, developed 
to this end, can be applied only to simple AI models and mathematically tractable 
perturbation models. Complex models are evaluated with time-consuming tech-
niques that sometimes silently fail, causing a false sense of security. Moreover, the 
security of AI components is usually evaluated by considering them as a stand-
alone module, which does not interact with any other system component. New 
protocols and methodologies are thus also needed to evaluate the security of sys-
tems with one or more AI-based components, following a more principled engi-
neering approach. 

The second challenge is to devise models with trustworthiness guarantees, which 
can operate reliably also in out-of-distribution scenarios, i.e., under outlying and 
corner cases with respect to the data used to train the model. Although different 
methods have been proposed to mitigate these issues, and more will be proposed 
within ELSA, further effort will be needed to make these systems robust enough 
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to be trusted in practical cases, along with systematising their design process and 
testing.  

To conclude, incorporating AI in high-risk applications will demand further work 
to properly quantify the risk associated with AI-based, automated decisions, and 
take appropriate mitigation measures, following a well-principled engineering ap-
proach. Understanding how to satisfy the security and safety requirements spec-
ified in the AI Act is a grand challenge that has to be solved to allow the usage of 
AI-based systems in high-risk applications.  

5.3. Use Cases: Autonomous Driving and Cybersecurity 
In the following, we describe the two use cases related to the first grand challenge 
posed by ELSA: the autonomous driving and cybersecurity use cases.  

5.3.1. Autonomous Driving Use Case 
 
The Autonomous Driving use case aims to assess machine learning performance 
in the vision/perception tasks that play a crucial role in advanced driving assis-
tance systems (ADAS) for passenger cars and autonomous vehicles (AVs) such as 
robo-taxis, shuttles, and delivery droids.  

Unleashing these safety-critical systems onto public roads is a considerable chal-
lenge, as they must deal with diverse — sometimes hazardous — driving condi-
tions. Furthermore, these largely data-driven systems, running on limited onboard 
computers, must withstand severe disturbances, ranging from sun glare to sensor 
blockage, and physical or digital adversarial attacks. While data growth and de-
sign advances continue to improve the raw performances of driving stacks, cur-
rent machine learning methods suffer deficiencies in robustness, generalisation, 
transparency, and model verification. Evaluating these properties is also challeng-
ing due to a lack of tools and testbeds.  

This use case aims to quantitatively compare the robustness of perception models 
trained on identical datasets, especially when confronting distribution shifts and 
perturbations. We focus on two primary tasks for vision-perception of autono-
mous driving: semantic segmentation and object detection. Semantic segmen-
tation classifies every pixel within an image into a semantic class such as pedes-
trian or car, producing a segmented image. Object detection identifies and lo-
cates objects within an image, typically using bounding boxes, and predicts the 
most probable semantic class for each identified object. 

For thorough benchmarking regarding robustness to perturbations and distribu-
tional shifts, we will evaluate visual models on four criteria: 

1. Resistance to diverse natural perturbations like sun glare, sensor soiling, or 
adverse light and weather; 

2. Generalisation to unfamiliar domains, such as a different city or camera; 
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3. Ability to detect objects of unknown categories and other out-of-training-

distribution inputs; 
4. Ability to characterise its own predictive uncertainty. 

We will incorporate a set of baseline approaches in our benchmark, whose release, 
along with the analysis of the results, will foster new recommendations for safe 
and robust models for AV/ADAS. We are confident that this will not only accelerate 
the progress in this field but also attract the interest of researchers from related 
disciplines. 

5.3.2. Cybersecurity Use Case 
 
The Cybersecurity use case aims to evaluate machine-learning methods when 
they are used as a first line of defence against malicious software (malware), fo-
cusing on the Android operating system. This application is often required when 
a large number of Android applications must be analysed every day, demanding 
high levels of automation. On this task, machine learning usually performs well, 
learning common patterns from data and enabling detection of potentially never-
before-seen malware samples, but it has been shown that those detectors: 

1. tend to exhibit a rapid decay of performance over time due to the natural 
evolution of samples; 

2. can be bypassed by even only slightly manipulating malware samples in 
an adversarial manner.  

The practical impact of these two issues is that current learning-based malware 
detectors need constant updates and retraining on newly-collected and labelled 
data.  

We propose to tackle these two issues with a benchmark that will provide tools 
for comparing learning-based Android malware detectors in a realistic setting and 
evaluate whether methods showing robustness with respect to adversarially-ma-
nipulated samples retain certain robustness properties also against real-world at-
tacks. For this reason, we have designed three main tracks, consisting of evaluat-
ing both adversarial (in two different settings) and temporal robustness. We will 
include in the benchmark a number of state-of-the-art approaches as baselines, 
to provide an initial scoreboard to which participants of the challenge should com-
pare. 

A continuous evaluation of malware detection models based on different specific 
metrics - that are computed on the periodically-scheduled evaluation rounds - will 
allow us to understand whether improving adversarial robustness against certain 
perturbation models will also help improve robustness against the real, temporal 
drift observed from real-world data over time, or if different techniques should be 
developed, instead. Our ultimate goal is to understand how to build and deploy 
AI-based malware detectors that can be maintained with less effort and are able 
to react more promptly to novel threats. This competition will help advance the 
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methodologies for security testing and robustness evaluation of AI/ML models, for 
designing robust and certifiable AI/ML models, and for their uncertainty estima-
tion. 

5.4. Benchmark Metrics 

In our benchmarks, models can be ranked by different metrics that provide com-
plementary information about their performance.  

Autonomous Driving. For this use case, we will unify fragmented benchmarks ex-
isting in the literature, typically used for assessing performance (accuracy, robust-
ness) on a single type of perturbation or corner-case, repurpose published da-
tasets to accommodate new assessments, modify real scenes with elements of 
interest, and mine rare corner-cases. This wealth of diverse driving data will allow 
us to assess the models' performances in different conditions, such as light flares, 
sun glares, soiling, weather perturbations, and the presence of unknown objects. 
The considered metrics will cover different analysis perspectives, including cali-
bration, uncertainty estimation, robustness to distribution shifts, and ability to de-
tect out-of-distribution cases. Obtaining a model that performs well considering 
this mix of metrics would lead to a perception model that can be trusted to be 
resilient in difficult conditions (e.g., extreme weather conditions, changes of oper-
ation domains, rare but potentially catastrophic situations). Alternatively, the 
model may launch an alert, or fail “gracefully” in front of the so-called unknown 
unknowns. To capture these behaviours, we choose specific metrics for out-of-dis-
tribution detection, for in-domain long-tailed objects and corner cases, and for ro-
bustness, such as the Area Under the Receiver Operating Characteristic (AUROC) 
and the Precision-Recall (AUPR) curves, the false positive rate (FPR) at a fixed true 
positive rate, and the standard accuracy. 

Cybersecurity. For this use case, the robustness of machine learning-based mal-
ware detectors can be measured by quantifying their performance decay in the 
presence of adversarial input perturbations (adversarial robustness) and new mal-
ware families unknown at training time (temporal robustness). The adversarial ro-
bustness evaluations will thus be conducted by relying on well-defined perturba-
tion models, whereas for the temporal evaluation, we will apply specific data sam-
pling rules in order to reproduce a real-world setting. As the specific task per-
formed by malware detectors is binary classification, and the test sets are unbal-
anced, we can select metrics such as Precision, Recall, F1 score, and true positive 
and false positive rates. All these metrics can be used also to evaluate robustness 
by measuring them on adversarially-manipulated samples, within a given pertur-
bation model (e.g. injecting a maximum number of API calls without compromis-
ing functionality of the malicious samples). Finally, we will aggregate the metrics 
computed for each submitted model on different temporal data splits, in order to 
estimate their temporal trend by applying specific metrics such as the Area Under 
Time (AUT).  



ELSA  Lighthouse on Secure and Safe AI  

 
  27 of 52 
 

 

  

Grand Challenge: Main Summary and Value Proposition 
Research Challenges 

• Security Testing and Robustness Evaluation 

• Robust and certifiable machine learning 

• Uncertainty estimation and decision making 

• Relationships among robustness, privacy, explainability 
and fairness 

Further Challenges 
• Systematize/automate AI/ML security testing 

• Development of AI/ML models with trustworthiness 
guarantees 

Use Cases 
• Autonomous Driving: out-of-distribution image seg-

mentation 

• Cybersecurity: malware detection under adversar-
ial/temporal drift 

 
Value Proposition: ELSA provides a unique perspective and approach 
to developing and testing safe and secure AI methods in the context of 
cybersecurity-related and safety-critical applications, considering proper 
threat models and practical attacks. 
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6. Grand Challenge: Robust Private Collaborative  
Learning 

Modern machine learning depends on ever larger data sets. Many of the most in-
teresting data sets are about or touch upon people – their behaviour and proper-
ties. Collecting and processing such data sets can be at odds with privacy of the 
data subjects. 

The vision of this grand challenge is to develop learning systems that can use large 
distributed data sets while guaranteeing data subject privacy. As collecting the 
data to a central database increases privacy risks, we focus on a distributed set-
ting, similar to private federated learning. In contrast to federated learning where 
the process is orchestrated by a single entity and the outcome is typically a single 
model, we focus on collaborative learning, which considers more equal settings 
where multiple parties may have different goals. Formal guarantees for privacy 
can be obtained through differential privacy and for robustness through Byzan-
tine robustness. 

6.1. Research challenges 

6.1.1. Robust collaborative learning with heterogeneous data 

Byzantine-robust learning. A severe downside of the current distributed systems 
is the lack of robustness, in the sense that malicious participants can sabotage the 
ML system by feeding it wrong data intentionally, known as data poisoning. A 
strong theoretical model for this situation is given by Byzantine-robust training, 
which refers to the setting where a fraction of all participants can exhibit arbitrary 
malicious behaviour (such as providing wrong data and/or not following the train-
ing protocol). In this sense, this assumes the strongest possible type of adversary, 
as there are no bounds assumed as to how much an adversary might alter or “poi-
son” their contributed data. 

Byzantine-robust learning can be achieved with relative ease when the data is iid, 
participants collaborate on the same single learning task, and privacy is not a con-
cern. Challenges start to arise, the more these assumptions are violated, as benign 
non-iid data can be difficult to distinguish from adversarial data, and many robust 
aggregation algorithms are incompatible with secure aggregation commonly 
used in private learning. Developing efficient algorithms for settings where many 
are violated simultaneously is an important area for future research. 

Online private multi-agent learning. The online learning paradigm is a crisp 
mathematical model within which multi-agent learning with non-i.i.d. data 
sources can be studied with rigorous performance guarantees. 

In multi-agent online learning, the learning agents are nodes which directly com-
municate only with their neighbours. At each time step, each active agent makes 
a prediction on the next element of their local data stream, incurs a corresponding 
loss and observes some feedback information (e.g., the loss gradient). By sharing 
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the feedback with their neighbours, the agents can learn faster than by operating 
independently. 

Homogeneous and heterogeneous learning correspond, respectively, to single 
and multi-task learning. In single-task, the agents compete against the best 
global model over the union of the local data streams. In multi-task, each agent 
competes against the best model over their own local data stream. 

The introduction of differential privacy (DP) requirements in multi-agent online 
learning creates a number of interesting challenges. The fundamental question is 
to provide sharp characterizations of the trade-off between privacy and utility in 
online learning, where utility is measured in terms of regret12. It will be useful to 
consider agents with personalised levels of privacy as well as user-level DP in ad-
dition to the more common item-level DP. Other important issues that need to be 
addressed concern the impact caused by the communication constraints and the 
impact on the memory footprint of the online algorithm caused by the implemen-
tation of the DP mechanism. 

6.1.2. Privacy, utility and incentives in collaborative and federated learning 
An important challenge in collaborative and federated learning is the develop-
ment of mechanisms that protect the privacy of participants while preserving the 
utility of the learned models, i.e., the accuracy of their predictions.  

Algorithms for differentially private federated learning. Differential privacy (DP) 
is most often used to guarantee privacy in federated and collaborative learning. 
Formally analysing the privacy in these cases is more difficult than in the central-
ised setting. A classic model for DP in a federated context is local DP, where each 
entity does not trust anyone else and protects its data by adding local noise to its 
contributions before sharing them with others. This strong model unfortunately 
leads to poor utility13. Intermediates between local DP and trusted curator model 
(a central party which gathers all raw data) can be built using secure shuffling and 
secure aggregation. Fully understanding the theoretical properties of these mod-
els (including compositionality) and developing algorithms that are as close to the 
trusted curator model as possible, while adhering to the limitations of these mod-
els, such as the finite domain of secure aggregation, are interesting open prob-
lems. The notion of metric differential privacy14, a framework where privacy is de-
fined with respect to an underlying metric, can be useful for achieving a good pri-
vacy-utility trade-off in situations where local datasets are highly heterogeneous, 
as commonly is the case in federated learning. 

Privacy without noise. Another interesting approach is to consider methods 
which do not necessarily add noise to updates (as DP does), but exploit other 

 

12 Jain, P., Kothari, P., and Thakurta, A. (2012). Differentially private online learning. In Proceedings of the 25th 
Conference on Learning Theory.  Agarwal, N., and Singh, K. (2017). The price of differential privacy for online 
learning. In Proceedings of the 34th International Conference on Machine Learning. 
13 Jayaraman, B., and Evans, D. (2019). Evaluating differentially private machine learning in practice. In 28th USE-
NIX Security Symposium, USENIX Security 2019 (pp. 1895–1912). 
14 Chatzikokolakis, K., Andrés, M. E., Bordenabe, N. E., and Palamidessi, C. (2013). Broadening the scope of differ-
ential privacy using metrics. In Privacy Enhancing Technologies - 13th International Symposium, PETS 2013. 
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sources of randomness, like the batch sampling procedure or the “mixup” proce-
dure, or rely on different approaches like parameter pruning or quantisation. 
Pruning and quantization can lead to models with better generalisation and be 
less vulnerable to attacks, but also reduce the computation/communication re-
quirements and therefore potentially the energy consumption. These alternative 
techniques could also be combined with more traditional DP approaches, poten-
tially leading to improved privacy–utility trade-offs.  

Incentives and private federated learning. On top of privacy and utility trade-offs, 
it is important to study incentive strategies to motivate the data owners to coop-
erate by compensating them for their privacy loss in the interest of global utility. 
This is especially important in a collaborative environment, where not only the 
model owner but also the intention of the data owner must be considered, as data 
owners can opt out if they do not agree to the privacy–utility trade-off desired by 
the model owner.  

The goal of the incentive mechanism in federated learning is to find the equilib-
rium point for both the data owner and model owner to be satisfied. The main 
challenge in achieving this goal is to develop a robust formal framework for the 
pricing of data in order to incentivize the participation of data owners by compen-
sating their loss of privacy. Only when we estimate each data owner's contribution 
accurately, can we provide an appropriate incentive to them. In federated learn-
ing, it is more difficult because there are multi-dimensional evaluation criteria 
such as model accuracy, privacy, fairness, communication, etc. Several tech-
niques, including Shapley value, are studied for this purpose. In addition to that, 
agents might have personalised privacy levels, which may affect utilities. In this 
environment, it is natural to study the efficiency of stable equilibria and envy-free 
equilibria compared to the socially optimal solution (also known as price of stabil-
ity and price of fairness). 

This setting defines a data market that can be viewed as a supply chain where 
data owners are suppliers and data buyers are retailers. From a game-theoretic 
viewpoint, one is interested in studying natural solution concepts arising from this 
market, such as Stackelberg equilibria. 

Repeated interactions at a data market can be modelled as a repeated game. The 
typical measure of performance in these repeated games is the regret, which 
compares the cumulative utility of the learner’s decisions with that of the single 
optimal decision on the same sequence of games. Finding regret minimising so-
lutions in various realistic settings is an interesting area of research. 

6.1.3. Communication and computation efficiency for scalable learning 
A critical challenge in realising this promise of collaborative learning is to develop 
efficient methods for communicating and coordinating information between dis-
tributed devices, in the most communication and computation-efficient way pos-
sible. On most distributed systems, the communication of information between 
devices is vastly more expensive than reading data from main memory and per-
forming local computation. Moreover, the optimal trade-off between communi-
cation and computation can vary widely depending on the dataset being pro-
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cessed, the available system resources being used, and the training objective be-
ing optimised. While extensive work has gone into communication-efficient train-
ing paradigms in recent years, the main challenge that needs to be addressed is 
to combine such efficient learning algorithms with the additional crucial aspects 
of privacy and robustness as well as personalised collaborative learning. 

6.2. Further research directions 

Theory and practice of private synthetic data. Being able to generate anony-
mised synthetic data that could be freely shared and analysed as real data would 
solve many privacy problems. Unfortunately, this is difficult to realise in practice: 
generating meaningful data with strong anonymity guarantees (strong DP) is 
hard and analysing such data as if they were real can lead to biases15. Developing 
methods that produce higher-fidelity private synthetic data under strong DP 
would open new opportunities in many applications. The cited work presents the 
first method that allows consistent downstream analysis from synthetic data. This 
should be generalised to more general settings. Finally, there is very little theoret-
ical research on DP synthetic data, especially beyond discrete tabular data. More 
theory could help understand the fundamental limitations of the approach. 

Verification of DP properties and anonymity. A popular approach to privacy-pre-
serving learning is described as “algorithms go to data”, indicating that data hold-
ers would run analyses on their data on behalf of analyses who would have no 
direct access to the data. This poses important questions on how to verify that the 
algorithm is not attempting to steal the data. One way to solve this is to prove that 
the algorithm is DP with sufficiently strong privacy parameters. Developing meth-
ods that allow data users to prove to data holders that the algorithms they are 
intending to use are indeed DP is an important challenge for future research. 

DP beyond tabular data. DP provides privacy protection to individuals when the 
contribution of each individual can be cleanly separated to define adjacent data 
sets that differ in the contribution of a single individual. In many real-life applica-
tions and data sets this may be difficult: the contributions of different individuals 
are intertwined, and some contributed elements may appear several times. De-
veloping a generalised DP-like approach to handle such situations more flexibly 
than current methods would be useful in many applications. 

Privacy with using public data and pre-trained models. Research and practice of 
machine learning is increasingly moving to a “foundation model era” where the 
solutions build upon large existing models pre-trained on large data sets. Fine-
tuning a large pre-trained model on a sensitive data set rather than training from 
scratch has led to significant improvements in accuracy of various DP computer 
vision16 and natural language processing17 tasks. More generally, this highlights 

 

15 Räisä, O., Jälkö, J., Kaski, S., and Honkela, A. (2023). Noise-aware statistical inference with differentially private 
synthetic data. In International Conference on Artificial Intelligence and Statistics (pp. 3620-3643). PMLR. 
16 Luo, Z., Wu, D. J., Adeli, E., and Fei-Fei, L. (2021). Scalable differential privacy with sparse network finetuning. In 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). 
17 Li, X., Tramer, F., Liang, P., and Hashimoto, T. (2022). Large language models can be strong differentially pri-
vate learners. In The Tenth International Conference on Learning Representations, ICLR 2022. 



ELSA  Lighthouse on Secure and Safe AI  

 
  32 of 52 
 

the utility of using public data or pre-trained models to help DP learning. Devel-
oping better methods for this as well as theory to study the best approaches 
would be very useful. As with foundation models in general, it can be difficult to 
ensure that the test data have not already been included in the training set. This 
could be a major problem in privacy, as we might seriously misjudge a privacy-
preserving method’s capabilities in this setting. 

6.3. Use cases: Health, Robotics and Document Intelligence 

ELSA considers three use cases as examples of those requiring privacy: health, 
robotics, and document intelligence. 

6.3.1. Health 
Health is clearly high among sectors expecting major advances from AI. Broader 
use of health data holds promise for more effective and efficient treatments. How-
ever, health data are highly sensitive and need to be handled with care. New mod-
els for managing secondary use of health data, i.e. its use for purposes not related 
to patient care such as research and development, are being developed. While 
some countries have implemented their national models, a joint European ap-
proach is being developed as the European Health Data Space (EHDS). 

The consensus model for secondary use of health data is based on analysing only 
lightly modified data in secure processing environments, while making sure that 
any published results are strongly anonymised. This is a compromise between in-
formation security and usability: researchers can work with mostly pristine data 
inside a protected sandbox, but identifiable sensitive data can never leave that 
sandbox. 

Large-scale use of health data often requires combining data from many sources. 
Moving everything to a single secure processing environment raises risks and can 
run into regulatory barriers. This has created increasing interest in distributed 
learning technologies, such as federated learning and swarm learning. These 
need to be coupled with strong privacy technologies such as differential privacy 
to ensure privacy of the data. 

Getting access to health data for research typically requires a time-consuming ap-
plication process. New privacy-enhancing technologies such as private synthetic 
data promise to make the process smoother by allowing easier sharing of anony-
mous synthetic data. Again, strong privacy technologies such as differential pri-
vacy are needed to ensure the privacy of the data. Strong privacy requirements 
can reduce the accuracy of the synthetic data, highlighting the need for balancing 
privacy and utility for different tasks and new research to improve the trade-off. 

6.3.2. Robotics 
In the robotics use case, we consider a setting where autonomous robots operate 
alongside humans in complex environments. While the robots could improve 
their behaviour, i.e. their policies, by locally updating their model based on the 
experiences obtained, the learning would most likely benefit from samples out-
side the local environment.  
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Therefore our task becomes to learn the policies for the robots across multiple 
parties. Not only does this allow to reduce the computational cost for a single 
party, but also allows the model to be learned with more examples than each of 
the parties hold. 

In settings where the training data contains sensitive information, privacy must 
be accounted for. This could be the case for example for robots that operate in 
private homes and use sensors such as cameras to collect the training data. There-
fore, we need to make sure that the training data is only handled by parties that 
we can trust. The federated learning paradigm aims to solve this by keeping the 
training data on the local sites, and only communicating the model updates to a 
trusted server that aggregates the updates and sends the aggregate back to the 
clients.  

However, while this approach solves the clear privacy threat of directly leaking the 
sensitive training data, we also need to make sure that the learned policies do not 
leak any sensitive information learned from the sensitive features. This could be 
achieved by adding differential privacy as an additional layer of security to the FL 
framework. 

Besides the privacy concerns, the robots need to also operate safely. This is of ut-
most importance when the robots operate alongside humans. However when 
these robots are learned collaboratively there is a risk that a malicious party could 
try to affect the learned policies by poisoning the training data with adversarial 
examples. To guarantee that the learned policies are safe, we need to make sure 
that the learning procedures used are robust to adversarial examples or any other 
type of a malicious attack. 

The most common privacy-preserving learning methods, aimed at addressing the 
first goal, are based on adding noise to the learning process in order to mask out 
any individual's contribution. This added noise can possibly degrade the accuracy 
of the learned policies, and thus can also cause concerns with regards to safety. 
Therefore in order to guarantee both safety and privacy, we cannot simply use the 
robust and private federated learning tools independently, but we need to de-
velop methods to combine the two.  

6.3.3. Document intelligence 
The last decades have seen an increased digitisation of documents for practical 
and environmental reasons. However, the manual management of these digitised 
documents is becoming tedious and therefore requires an automation of the pro-
cess. 

Fortunately, many approaches and tools have been proposed to automatically 
process document images, collectively referred to as Document Intelligence. Doc-
ument intelligence is the research area at the intersection of computer vision and 
natural language processing, focusing on techniques and methods for extracting, 
interpreting and inferring information from documents. It is a rapidly growing 
field of research with applications in many sectors where the processing of large 
volumes of documents is essential, such as finance, insurance, public administra-
tion, business or personal document management. Document intelligence in-
cludes several subfields such as optical character recognition (OCR), information 
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extraction and document visual question answering (DocVQA). DocVQA focuses 
specifically on the task of answering questions about the content of a document 
image, which can involve high-level analysis and reasoning about both text and 
visual information.  

Therefore, more and more companies want to automate their document-based 
processes. Current practices focus on training generic DocVQA models that can 
then be applied on various downstream document understanding tasks. 

However, training an accurate machine learning model requires an amount of 
data that a single company may not have. 

One possible solution to deal with this problem is to train this model collabora-
tively by aggregating and centralising data from all companies. Unfortunately, 
documents are very sensitive and can leak valuable information. For example, 
some of the information available in these documents could be directly related to 
the company's business and could therefore lead competitors to want to infer this 
type of information. 

Another solution is to consider federated learning. However, even though feder-
ated learning is more private than the centralised approach, many attacks have 
shown that a lot of information can still be inferred from the updates/models 
shared between the clients and the server.  

The privacy of federated learning can be guaranteed by additional privacy-en-
hancing technologies such as differential privacy. Differential privacy is based on 
requiring the results of a computation to remain almost unchanged when the 
data for one user is changed. The document intelligence application highlights an 
interesting challenge for practical application of differential privacy: how to define 
one user. Invariance to changing a single document is likely too weak while 
changing one huge provider might make learning very difficult, suggesting a 
need for new formulations that are better aligned with application requirements. 

6.4. Benchmarks and metrics 

Evaluating privacy-preserving machine learning is much more difficult than gen-
eral machine learning challenges, because of the inherent tradeoff between pri-
vacy and utility. For any approach, it is possible to build a curve representing dif-
ferent tradeoffs. 

For easy evaluation, we need to somehow obtain comparable results from this 
curve for the different methods. This could be done either by fixing the utility and 
evaluating privacy at that point, or fixing privacy and evaluating utility at that 
point. From the privacy perspective, fixing privacy seems more reasonable as legal 
privacy requirements can be seen as a hard constraint. 

After selecting the operating point, the next subsections discuss challenges in 
concrete evaluation of privacy of a model. 

6.4.1. Evaluating formal differential privacy guarantees 
DP is a mathematical property over all adjacent data sets, usually differing by the 
contributions of a single individual. Because the number of possible adjacent data 
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set pairs is usually very large, it cannot be verified empirically but with a mathe-
matical proof. Any DP algorithm therefore has to come with such a proof and ver-
ifying this proof is the primary method of verifying that an algorithm satisfies DP. 

A pen-and-paper proof of DP still leaves open the translation of the abstract algo-
rithm analysed into computer code. Possible problems can range from simple 
bugs or overlooked properties of the computing environment, into problems 
stemming from different abstractions (e.g. real numbers vs. floating point num-
bers). There is some very recent work in so-called privacy auditing that attempts 
to construct examples to disprove the privacy claims that can be used to catch 
some such bugs. These can help create confidence that the implementation is 
correct, although they cannot formally prove it. 

 
6.4.2. Evaluating empirical guarantees with attacks 
Formal guarantees are important, but they only give a theoretical upper bound 
on the vulnerability of a particular method. For a complete understanding, it is 
important to complement these with empirical lower bounds on the vulnerability 
obtained from attacks, such as membership inference attack and reconstruction 
attack. 

A widely used scenario for evaluating vulnerability to attacks is a blue team - red 
team competition, where blue teams submit methods that protect the privacy, 
while red teams seek to attack and break the protections. The strongest attacks 
against a federated learning system would operate online based on messages ex-
changed during learning, possibly even as an active participant of the learning 
process, but this is difficult to organise in practice due to the amount of data often 
exchanged. A much easier alternative is to deploy attacks such as membership 
inference against the final model, either in white box mode (adversary has full ac-
cess to the internals of the model) or in black box mode (adversary only has access 
via some restricted API). 
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Grand Challenge: Main Summary and Value Proposition 
Research Challenges 

• Robust collaborative learning with heterogeneous data 

• Privacy, utility and incentives in collaborative and feder-
ated learning 

• Communication and computation efficiency for scalable 
learning 

Further Challenges 
• Privacy with pre-trained foundation models and public 

data 

• Extending formal privacy to more complex and realistic 
settings 

Use Cases 
• Health: secure access to distributed data; private syn-

thetic data 

• Robotics: privacy-preserving learning from deployed de-
vices 

• Document Intelligence: multimodal private federated 
learning 

 
Value Proposition: ELSA combines unique expertise on differentially pri-
vate and federated learning as well as private synthetic data, from core 
theory to practical applications. 
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7. Grand Challenge: Human Agency and Oversight 

7.1. Research challenges 

Research challenges of the human agency grand challenge are multifaceted and 
include technical questions, as well as social impact, including ethical, legal and 
regulatory challenges. 

The primary focus of the technical research of this grand challenge is concerned 
with unresolved challenges surrounding the capacity of humans to understand, 
interpret and comprehend the underlying logic of an output produced by an ML 
model, particularly those which utilise deep learning. If advances in ML and AI are 
to deliver the promised benefits of enabling and enhancing human well-being 
and for the benefit of the many and not merely the few, then they will need to 
operate in real-world settings in conjunction with individuals, organisations and 
communities of all shapes, sizes, and capabilities, including society’s most vulner-
able. It precipitates the need for addressing multiple ethical, legal and regulatory 
challenges described below.  

7.1.1. Interpretability 
The question of interpretability is multifaceted and can take different forms. It in-
cludes explaining existing, non-transparent models, including foundational mod-
els such as vision transformers; it also includes creating new, interpretable-by-de-
sign models, which are created with a specific purpose of being interpretable.  

Within ELSA, we leverage the collaboration between the technical partners to pro-
duce new methods aiming for interpretability, as well as looking into the overlap 
between this grand challenge and the two other ones outlined above, to identify 
the trade-offs between privacy, transparency and robustness. 

7.1.2. Disentangled learning 
More relaxed than interpretability is the notion of disentangled learning. This re-
fers to the way in which we want to factorise our decision making into a set of 
disentangled decisions, each having a desired meaning for the humans. For ex-
ample, we may want to program a robot in a way that we can disentangle its ac-
tions into a combination of straight walking and jumping, or generate plausible 
images of a human face which contains certain features: hair length, facial hair, 
smile, frowning, amongst others. While this does not go as far as interpretability, 
and the model may not be transparent in its working, it still allows agency for a 
human to define the desirable behaviour of the model by shaping up the features 
to their liking.  

Within ELSA, we consider the possibilities of disentangled learning both in con-
junction with interpretability and as a tool to identify interpretability.  

7.1.3. Datastreams and adapting to shifts in the data pattern 
Many existing ML methods are designed to operate in scenarios where the train-
ing data is fixed; a change in the data set, consequently, means that the whole 
system needs to be optimised from scratch. The concept of lifelong learning chal-
lenges this setting: the data could be provided through an ever changing data 
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stream, and the system is elastic enough to adapt to this data, ideally in real time. 
These data streams are masterminded by humans, external to the training sys-
tem, and therefore can also be viewed as a type of human-in-the-loop ML. 

In ELSA, we consider lifelong learning to be an important aspect of human-in-the-
loop ML, and see it as a complementary problem to the problem of transparency. 
Interpretable-by-design methods including prototype-based machine learning 
can be advantageous in both tasks and help improve the performance. 

7.1.4.  Federated and multiagent scenarios 
In many cases, the problem is complicated by models working in a complex sys-
tem, involving distributed access to the data. It may take different forms, including 
sharing parts of the input data, producing part of the decision making, or working 
within a multiagent system.  Such a problem statement means taking into ac-
count the problems of security and differential privacy which are an integral part 
of solving the challenge of federated learning, linking this grand challenge with 
the two previous ones.  

In ELSA, we are exploring the trade-offs between, on one hand, federated and 
multiagent scenarios’ safety and security,  and on the other hand, their transpar-
ency.  

7.1.5. Meaningful human oversight 
In the development and deployment of AI, it is vital that these machines remain 
always subject to meaningful human control, thereby ensuring that they remain 
our servants and not our masters.   

There are a number of properties attributable to AI technologies that make ensur-
ing meaningful human control a serious and hitherto unresolved challenge. These 
include the technical properties of many of these technologies (for example, their 
automaticity, lack of functional interpretability, opacity and stochastic properties 
(for some forms of ML), speed, scale, dynamism, lack of assurance concerning the 
provenance, integrity, legality and quality of the underlying data and so forth) but 
is also attributable in no small measure to the complexity of the socio-technical 
systems in which they are embedded, which is exacerbated by the multiplicity of 
actors, organisations and components which contribute to the supply chain 
through which real-world technologies are brought into being.  Accordingly, there 
remain acute challenges associated with establishing and maintaining meaning-
ful human oversight over the development and operation of these systems.  

ELSA contributions are grounded in existing and proposed regulatory governance 
frameworks that apply to data-informed services, as a means for generating in-
sight on the adequacy of existing frameworks and the proposed approach of new 
legal frameworks (including the EU’s proposed AI Act). By engaging with regula-
tors, stakeholders and drawing on and integrating insight from the voluminous 
literature on regulatory governance and critical algorithm studies, while engaging 
in primary research to understand how key stakeholders understand the risks and 
opportunities associated with existing and proposed legal governance frame-
works for data-informed services in Europe, ELSA  can provide recommendations 
to European policy-makers and the broader stakeholder community. 
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7.1.6. The rule of law 
AI technologies may be deployed in ways that directly threaten the integrity of 
democracy, respect for human rights and the rule of law.  

The recent release of large language models (LLMs) such as ChatGPT and others 
can be readily exploited by malicious actors in ways that seriously threaten epis-
temic trust, and thereby the foundations for peaceful social cooperation among 
strangers upon which civilisation depends.  This is one of the motivating concerns 
underpinning the on-going efforts at international level by national representa-
tives, convened under the auspices of the Council of Europe, to establish an inter-
national convention which is underpinned by the express purpose of establishing 
‘certain fundamental principles, rules and rights aimed at ensuring that design, 
development and application of AI systems is fully consistent with respect for hu-
man rights, the functioning of democracy and the observance of rule of law’ 
[Council of Europe, proposed International Convention on AI, Human Rights, De-
mocracy and the Rule of Law 2023, Article 118]. Yet the capacity for socio-technical 
systems in which AI technologies are embedded to operate remotely in a highly 
opaque manner, in real-time and at scale, makes the ability to ensure that these 
systems operate are brought under the rule of law, and are not employed in ways 
that seek to manipulate, exploit or otherwise interfere with the rights and free-
doms of natural persons remains an open challenge. 

ELSA partners are involved in the creation of legal and regulatory frameworks to 
contribute towards addressing the challenge of human agency. This includes, for 
example, involvement of ELSA participants in the first IEEE standard on Explaina-
ble AI [XAI, P297619] which holds a working group and is a process that takes years 
bringing together academia, industry and other interested stakeholders. How-
ever, whether these mechanisms are effective vehicles for securing safe and se-
cure AI including meaningful human oversight is unknown and unproven. Not 
only is the effectiveness of these techniques uncertain, but various commentators 
have drawn attention to the ‘private’ nature of the underlying standards and as-
surance processes, which appear contrary to basic principles of democratic ac-
countability, transparency and participation. 

7.2. Further research directions 
Interpretability of highly-parameterised foundational models remains a big 
challenge. It is not only so because of the opaque nature of these models which 
can be (at least to a certain extent) addressed using the standard explanation 
models, but also due to the problems such as opaque data collection. In many 
cases, such as for GPT-4 or Vision Transformers, for both text and image models, 
the data is neither public nor is it documented; furthermore, it is not clear how 
those data impact the decision making. 

Attribution and erasure of the trained data are also important aspects of this 
problem: when some of the data in an already trained model are shown to be 

 

18 https://ai-regulation.com/council-of-europe-draft-convention-on-ai-human-rights-democracy-and-rule-of-
law/#:~:text=The%20Draft%20%5BFramework%5D%20Convention%20on,by%20November%2015th%2C%202023. 
19 https://sagroups.ieee.org/2976/ 
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problematic (e.g. due to the ethical or legal reasons), there needs to be a way to 
erase those, a problem studied as machine unlearning.  

Quantification and characterisation of model transparency presents another 
formidable research challenge. It is possible to address this problem through dif-
ferent viewpoints such as quantification of disentanglement, or through qualita-
tive analysis of the transparency, in a way similar to the characterisation of the risk 
in the AI act. However, these measures do not encompass all possible scenarios of 
characterising transparency, and new ways need to be found.  

7.3. Use cases: Robotics and Multimedia 

7.3.1. Robotics 

Robots that autonomously carry out complex tasks have a great potential to solve 
major societal challenges, e.g. enabling sustainable food production, helping in 
disaster situations, or assisting people with limitations. In many of these applica-
tions, robots will have to operate with and around humans to solve desired tasks. 
These settings, however, put additional design requirements on the robots’ oper-
ation with humans-in-the-loop, e.g. strong safety requirements or interpretability 
of the robots’ decisions. Enforcing such design requirements is particularly diffi-
cult for autonomous robots that employ modern ML techniques for decision mak-
ing. On one hand, these robots can learn highly complex behaviours and adapt to 
new tasks through interaction with their environment. On the other hand, many 
ML models are practically black boxes and often do not allow robot developers to 
use classical verification techniques to ensure desired properties of the robot dur-
ing the robot operation.  

 

Figure 2: Motivation of necessity for autonomous robots to operate safely and as 
intended around humans.  
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It is of utmost importance that autonomous robots operate safely and as intended 
around humans. For instance, when robots perform kitchen tasks in a home-like 
environment (see Figure 2), the policy of a robot must always maintain a sufficient 
safety distance (see red circles in Figure 2) and low velocities around humans. To 
learn such robot policies, robots need to anticipate the human’s motions during 
learning to not cause undesired situations. Besides safe operation, autonomous 
robots must further incorporate and obey human instructions, such as task goals 
and how the task should be completed. To develop learning-based autonomous 
robots that adhere to human instructions,  new research advances are required in 
robot learning with humans-in-the-loop. Users of the robots should be able to in-
struct the robot about the intended task to perform, e.g. “get the object from the 
shelf and put it on the table’’, and how the robot should perform the task, e.g. 
‘’place the object on the side of the table where the user normally sits”. This task 
specification needs to be understood by the robot to learn the desired behaviours. 
To oversee the learning process, we need to make the robot’s learned behaviour 
interpretable for humans. The robot should explain to humans what it has learned 
so far and how it will perform the task. For instance, the robot in Figure 2 may 
signal to the user that it first goes to the shelf in the corner of the room, then picks 
up the object, and finally places it on the table next to the chair (see Figure 2). The 
advances in addressing this grand challenge will help to create interpretable 
models of what the robot has learned and how it will perform a given task.  

By taking into account human oversight, one can enable new generations of au-
tonomous robots that can safely execute tasks with and around humans. The 
learned policies will minimise residual risks and help ensure that robots operate 
in ways that ensure that they do not unduly threaten human health and safety.  
With the help of new interpretability and explainability techniques, these robots 
will further be able to explain what they have learned and how they will execute 
given tasks, always giving users the oversight of the robot. In this way, autono-
mous robots will operate as intended by users and may, in turn, contribute to-
wards addressing societal needs for physical assistance in real world environ-
ments and offer the potential to enhance economic productivity, health and 
safety of human workers. 

7.3.2. Multimedia 

The ability to generate highly realistic images and videos using generative deep 
learning models has created new challenges in the domain of multimedia. In par-
ticular, it has become increasingly difficult to distinguish between real and fake 
visual content, which has important implications for applications such as content 
moderation, forensics, and journalism. This task is particularly challenging be-
cause deep learning models are highly effective at generating images that are 
visually indistinguishable from real images. At the same time, these models can 
have distinct statistical properties that can be exploited to differentiate them from 
real images. 

One of the big challenges is detection of deep fakes generated using deep learn-
ing models. For that purpose, it is possible to generate a large dataset of deep 
fakes, which will be used to train and evaluate algorithms designed to detect and 
classify fake images.  
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Another aspect of the use case is developing baseline algorithms for detecting 
deep fakes and manipulated media. These models will be used to evaluate the 
performance of new approaches developed by the research community, and will 
serve as a benchmark for measuring progress in this area. Metrics such as preci-
sion, recall, and F1 score will be used to evaluate their performance, with higher 
scores indicating better performance. Other metrics used to evaluate deep fake 
detection models include the area under the receiver operating characteristic 
curve (AUC-ROC), which measures the model's ability to distinguish between real 
and fake images as its discrimination threshold is varied.  

A potential benchmark set-up involves comparing the deep fake detection mod-
el's performance metrics against those collected by human classification. By com-
paring the accuracy, precision, recall, and other relevant metrics of the model with 
those of human classification, it is possible to get insights into the strengths and 
weaknesses of each approach. This information can then be used to refine the 
model and improve its performance, as well as to develop a more effective com-
bination of human and algorithmic approaches to combating the threat of deep 
fakes. 

7.4. Benchmarks 

7.4.1.  Benchmark Metrics  
As interpretability is defined in the terms of (human) understanding, it may not be 
possible to provide universal metrics which do not explicitly take humans-in-the-
loop into account. 

Instead, a number of options are available to monitor such progress, which in-
clude: 

l quantification of representation learning transparency; and 

l developing qualitative monitoring tools. 

Quantification of representation learning transparency concerns the problem of 
understanding which aspects of the model contribute towards the decision mak-
ing. For this purpose, a number of approaches have been proposed including 
measures of disentanglement [Do and Tran, 202320] [Sepliarskaia et al, 201921]; met-
rics based on attention-based post-hoc explanations [Bibal et al, 202222]. However, 
this does not solve the problems of quantification of transparency as current ex-
planations have limitations. For example, attention-based models may merely 
register correlations between explanations and the inputs [Wiegreffe and Pinter, 

 

20 Do, Kien, and Truyen Tran. "Theory and Evaluation Metrics for Learning Disentangled Representations." Inter-
national Conference on Learning Representations, 2023. 
21 Sepliarskaia, Anna, Julia Kiseleva, and Maarten de Rijke. "How to not measure disentanglement." arXiv pre-
print arXiv:1910.05587 (2019). 
22 Bibal, Adrien, Cardon, Rémi, Alfter, David, et al. Is attention explanation? an introduction to the debate. In : 
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). 2022. p. 3889-3900. 
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202023] and it is well known that correlation is not (necessarily) a causation. There-
fore, the methodology of evaluation is an open theoretical and practical question. 

Qualitative characteristics can be centred around such aspects as number and 
nature of model parameters; possibility for and the nature of visual and linguistic 
interpretability.  

To produce meaningful oversight over decision making, it is necessary to: 

l report quantitative and qualitative metrics; 

l develop new techniques to derive quantitative metrics for continuous as-
sessment of interpretability; and 

l engage with the use cases to include the scenarios of transparent decision 
making into the practical challenges. 

From the perspective of use cases, there is a need for customised metrics which 
reflects their needs. The autonomous driving use case, for example, is centred 
around robustness and reliability of the models, and therefore, the question of 
transparency should be solved jointly with it. The robotics use case is centred 
around the notion of safety, with some of the metrics for safety evaluation also 
being capable of shedding light on the intrinsically linked question of transpar-
ency. The multimedia use case concerns distinguishing generated data, and 
therefore, the focus would be on the clues which would help give away the salient 
features of the particular algorithm, generating these data.  

7.4.2. Addressing the challenge of integrated governance to secure  
meaningful human oversight 

To address the challenge of integrated governance to secure meaningful human 
oversight, the ELSA team will undertake primary and secondary research to criti-
cally interrogate potential mechanisms through which the ‘quality‘ of data-driven 
services might be secured, and produce analytical materials, peer-reviewed and 
policy-oriented content to disseminate and draw attention to our findings and 
recommendations. 

The goal of our research will be to not only study how to set up effective govern-
ance structures for algorithmic decision-making systems but also to understand 
the needs, perceptions, and hopes of policy makers, who may govern such sys-
tems. We hope our interaction with policy makers would usher in a new series of 
technical methods that help provide decision-makers with control over system 
outcomes. 

 

23 Wiegreffe, Sarah et Pinter, Yuval. Attention is not not explanation. In : 2019 Conference on Empirical Methods 
in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, 
EMNLP-IJCNLP 2019. Association for Computational Linguistics, 2020. p. 11-20. 
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Grand Challenge: Main Summary and Value Proposition 
Research Challenges 

• Transparency and explainability in human-readable terms 

• Legal and ethical challenges of safe and secure AI 

• Governance architectures ensuring meaningful human 
oversight 

Further Challenges 
• Interpretability of highly-parameterised foundational 

models 

• Attribution and erasure of the trained data 

• Quantification and characterisation of model transparency 

Use Cases 
• Robotics: interpretable models for safe robots 

• Multimedia: detection of deepfakes 

 
Value Proposition: ELSA combines unique expertise in human-in-the-
loop decision making, encompassing technical aspects such as interpret-
ability and core ML, as well as ethical, legal and regulatory knowledge. 
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8. Case Study: Large Language Models, ChatBots, Intel-
ligent Assistants 

Challenges to Secure and Safe AI by LLMs 

Development and expansion of new deep learning techniques has made it possi-
ble to solve many decision related problems in ways unimaginable just a few years 
ago. However, such a fast move from fundamental and applied research into com-
mercial products and government services has created a range of problems which 
can be broadly attributed to interaction between technology and society. 

We suggest that concrete examples are given of these new problems which in-
volve:  

l The need for alignment with ethical principles (including human 
rights). 

l The need to conform with legal duties and obligations, and poten-
tially risk of undermining the rule of law and democracy.   

l The need for the system to be robust in a technical or organisational 
sense.  

l The need for a human (in the loop) to understand and evaluate the 
machine output/answer. 

These problems are, in many ways, intertwined: in the recent works, one can see 
that the computational aspects of the state-of-the-art models are intertwined 
with the legal and ethical challenges. This can be illustrated by the following ex-
ample. A large language model (LLM) must not, in accordance with the GDPR, 
disseminate private data. But if human’s understanding of such LLM is poor 
enough that one cannot formally prove that the system would not output these 
personal data, in full or partially, in any possible scenarios, this may lead to falling 
short of GDPR requirements.  This hypothesis is supported by formal complaints 
on ChatGPT LLM to the French personal data regulator, CNIL, which claim the lack 
of data protection.  Similar complaints to the Italian regulators resulted in a tem-
porary ban of the ChatGPT software24. 

LLMs and other big models (such as image generators) include proprietary data 
as well as complex black-box architectures. The problems related to the proprie-
tary data, in this context, include the fact that it is not publicly known which spe-
cific data set the model is trained on. This creates the possibility of non-ethical 
data collection and leads to a lack of reproducibility. The technical tasks to address 

 

24 https://www.bbc.com/news/technology-65139406  

https://www.bbc.com/news/technology-65139406
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these issues may include the removal of impact of undesirable, non-ethically col-
lected data (e.g. personal data, intellectual property) from the model. 

The black box nature of many of the existing AI models, especially based on deep 
learning, necessitates the development of the methods and tools for transparent 
machine learning. At the heart of the need for making LLMs transparent lie mul-
tiple legal and ethical issues that require input from multiple domain-experts and 
stakeholders. Such questions include those around intellectual property perme-
ating from the training data to model outputs, eroding consumer trust, and how 
to ensure LLMs can be verified for factual correctness, data provenance and ad-
herence to ethical principles.  

In some sense, the role of how generative tools affect human agency is at the 
heart of the current LLM revolution. How does an agent like ChatGPT affect deci-
sions that individuals make in the real world? We expect a surge in work, led by 
consortia like our own, to not only study the effects of how LLMs empower deci-
sion-makers but also understand how these powerful systems are governed on a 
regulatory, context-specific basis. The ethics of deploying such technologies re-
quires a precise characterization of their shortcomings from interpretability to ro-
bustness (or lack thereof). Many countries, including those in the European Union, 
will need to decide how to govern augmented decisions, where humans observe 
AI system suggestions in their decisions. 

Technical perspective of Security and Safety of LLMs 

The disruptive progress of Large Language Models (LLMs). LLMs have recently 
shown surprising capabilities. This technology bears great potential and is of a dis-
ruptive nature to the economy as well as society as a whole. The use of this tech-
nology should be critically reflected and used/deployed/integrated in compliance 
with legal boundaries and our societal values. 

Deployment and Application-Integrated LLMs. We are currently seeing a rapid 
deployment at scale of this technology. Given severe security and safety concerns 
such as lack of distinction between trusted and untrusted inputs – even openly 
acknowledged by the involved companies25 26 – the consequences are difficult to 
foresee. From our scientific perspective and our information/experience with the 
technology so far, the users are at risk and compliance is unclear to say the least. 
Nevertheless, deployment has already happened with integration in Bing and an 
announced deployment in Microsoft Office.  Companies foresee a trillion dollar 
business with millions of users already today. This is somewhat in contrast to the 
exploratory approach portrayed by OpenAI. Integration with plugins will lead to 

 

25 GPT-4 System Card. OpenAI 2023. https://cdn.openai.com/papers/gpt-4-system-card.pdf 
26 Introducing Google's Secure AI Framework. Google 2023. https://blog.google/technology/safety-security/in-
troducing-googles-secure-ai-framework/ 
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even more capable, compositional systems, for which assessing and ensuring 
their trustworthiness is an open challenge. 

Task-open. LLMs are advertised and have shown strong capabilities at a range of 
tasks. In particular, the task is given by the user as a prompt. Hence the function-
ality is modulated at runtime. This gives a wide scope of potential application sce-
narios.  

General Compute Platform. The current development point in the direction of 
LLM-type models becoming a general compute platform which is not task con-
straint. This raises severe concerns about cybersecurity and safety as described 
below. There is a larger debate about AGI, AI alignment, and other societal risks, 
which also deserve attention. Here, we focus on the imminent risks of the current 
technology. 

Data vs Instructions - Trusted vs Untrusted Sources. We like to highlight one 
very central technical challenge. The current models are trained to be “instruction 
following”. As a consequence the current generation of technology is not able at 
its core to distinguish between data and instructions as well as information from 
trusted and untrusted sources. Decades of research in cybersecurity have identi-
fied these ingredients as root causes of unsecure systems. Consequently, we are 
seeing the current generation of LLMs being an insecure and unsafe platform. 
While the efforts from OpenAI show an awareness of many of these risks, the fact 
that the already deployed models are not resilient and still vulnerable to jailbreaks, 
re-programming and other prompt injection attacks is further evidence that no 
principled solution is available right now. We outlined some of the core cyberse-
curity risks in a technical report that we also brought to the attention of the in-
volved companies27. 

Cybersecurity Perspective of LLMs 

While the elaborations above have already pointed out key issues with this tech-
nology in its current form, we further elaborate on the potential cybersecurity risks 
that are associated in particular with application-integrated LLMs and the out-
lined issues with intermingling instructing-following models with untrusted data. 
This emphasised the point of bringing together lessons learnt from cybersecurity 
in terms of threat modelling, separating data from instructions, and recognizing 
untrusted input, to the latest developments in AI/ML. 

This analysis led to a range of Prompt injection (PI) attacks that pose a significant 
threat to the security of LLMs. While PI attacks have been primarily limited to in-
dividuals attacking their own LLM instances (or a public model such as ChatGPT), 

 

27Sahar Abdelnabi*, Kai Greshake*, Shailesh Mishra, Christoph Endres, Thorsten Holz, Mario Fritz. "Not what 
you’ve signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection." 
The 16th ACM Workshop on Artificial Intelligence and Security Workshop (2023). 
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integrating LLMs with other applications might make them susceptible to un-
trusted data ingestion where malicious prompts have been placed. We call this 
new threat indirect prompt injections and demonstrate how such injections could 
be used to deliver targeted payloads. This technique might allow attackers to gain 
control of LLMs by crossing crucial security boundaries with a single search query. 

Recent LLMs may behave like computers executing programs28. Thus, one can 
draw insights from the classical computer security domain to design a new set of 
attack techniques. A high-level overview of the threat model, covering the possi-
ble injection delivery methods, the different threats, and the possible affected in-
dividuals or systems, can be found in the paper29: 

 

Figure 3 - Application integrated LLM threat landscape. 

Privacy of LLMs 

LLMs can ingest personal data both as part of the training data and in the prompt. 
These raise different privacy concerns. 

LLMs have been shown to be highly prone to memorising chunks of their training 
data verbatim, and reproducing that in response to a suitable prompt. As a first 
approximation, LLMs should therefore be assumed to memorise all of their train-
ing data. This memorisation could in principle be avoided by training with differ-
ential privacy (DP), but pre-training very large models with DP with acceptable 
accuracy has so far proven impossible. On the other hand, it is quite possible to 

 

28 Daniel Kang, Xuechen Li, Ion Stoica, Carlos Guestrin, Matei Zaharia, and Tatsunori Hashimoto. "Exploiting Pro-
grammatic Behavior of LLMs: Dual-Use Through Standard Security Attacks." arXiv (2023). 
29 Sahar Abdelnabi*, Kai Greshake*, Shailesh Mishra, Christoph Endres, Thorsten Holz, Mario Fritz. "Not what 
you’ve signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection." 
The 16th ACM Workshop on Artificial Intelligence and Security Workshop (2023). 
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perform private fine-tuning with a smaller collection of sensitive data with strong 
DP guarantees. 

Sensitive data in prompts poses other, even less studied problems. First and fore-
most, the provider of a hosted LLM can observe everything submitted to the LLM. 
There have already been cases of sensitive company documents being potentially 
leaked after an employee fed them to ChatGPT. First work addressing more com-
plicated scenarios, such as distilling sensitive data used as a prompt into an anon-
ymous equivalent prompt has recently started appearing as pre-prints. 

9. Mitigations 

GPT-4 was trained with intervention to reduce jailbreaks, such as safety-relevant 
reinforcement learning with human feedback (RLHF)—our work30 and several 
other jailbreak attacks31 32 show that it is possible to adversarially prompt the 
model even in real-world applications. While some jailbreaks are later fixed, the 
defensive approach seems to follow a “Whack-A-Mole” style. The extent of how 
RLHF can mitigate attacks is still unclear. Some recent theoretical work33 shows 
the impossibility of defending against all undesired behaviours by alignment or 
RLHF. Empirical evidence of inverse scaling in RLHF models was also reported34. 
Nevertheless, understanding the practical dynamics between attacks and de-
fences and their feasibility and implications (ideally in a less obscured setting) are 
still open questions. 

Besides RLHF, deployed real-world applications can be equipped with additional 
defences; since they are typically undisclosed, we could not integrate them into 
our synthetic applications. However, our attacks succeed on Bing Chat, which 
seems to employ additional filtering on the input-output channels without con-
sidering the model’s external input. Even if applied, it remains unclear whether 
filtering can be evaded by stronger forms of obfuscation or encoding35, which fu-
ture models might further enable. 

Other potential defences might include processing the retrieved inputs to filter 
out instructions. However, this might create another dilemma. On the one hand, 
to prevent the rescuer from falling into the same trap, we might need to use a less 

 

30 Sahar Abdelnabi*, Kai Greshake*, Shailesh Mishra, Christoph Endres, Thorsten Holz, Mario Fritz. "Not what 
you’ve signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection." 
The 16th ACM Workshop on Artificial Intelligence and Security Workshop (2023). 
31Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida Zhao, Tianwei Zhang, Yang Liu. 
"Jailbreaking chatgpt via prompt engineering: An empirical study." arXiv (2023). 
32Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. "Jailbroken: How Does LLM Safety Training Fail?." arXiv 
(2023). 
33 Yoav Levine Amnon Shashua Yotam Wolf, Noam Wies. 2023. "Fundamental Limitations of Alignment in Large 
Language Models." arXiv (2023). 
34Perez et al., "Discovering Language Model Behaviors with Model-Written Evaluations." arXiv (2022). 
35 Daniel Kang, Xuechen Li, Ion Stoica, Carlos Guestrin, Matei Zaharia, and Tatsunori Hashimoto. "Exploiting Pro-
grammatic Behavior of LLMs: Dual-Use Through Standard Security Attacks." arXiv (2023). 
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general model that was not trained with instruction tuning. On the other hand, 
this less capable model might not detect complex encoded input. For example, 
we show that by using an encoding (e.g. Base64), we needed to explicitly provide 
instructions for the model to decode the prompt. However, future models might 
perform such decoding automatically, e.g., when using self-encoded prompts36 to 
compress the input and save the context window. 

Another solution might be to use an LLM supervisor or moderator that, without 
digesting the input, specifically detects the attacks beyond the mere filtering of 
clearly harmful outputs. This might help to detect some attacks whose purpose 
does not depend on the retrieved sources (e.g., some scams) but might fail to de-
tect disinformation and other manipulation attacks. Verifying against retrieved 
sources will induce a similar dilemma to the one explained above. A final promis-
ing solution is to rely on interpretability-based solutions that perform outlier de-
tection of prediction trajectories37. Unfortunately, it is currently hard to imagine a 
foolproof solution for the adversarial prompting vulnerability, and the efficacy and 
robustness of these defences against obfuscation and evasion still need to be 
thoroughly investigated in future work. 

  

 

36 Noah Goodman Jesse Mu, Xiang Lisa Li. "Learning to Compress Prompts with Gist Tokens." arXiv (2023) 
37 Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella Biderman, and 
Jacob Steinhardt."Eliciting Latent Predictions from Transformers with the Tuned Lens." arXiv (2023). 
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10. Looking ahead 

Europe has understood the strategic role of AI technology and has made strategic 
investments into the whole ecosystem. While there is immense momentum and  
potential, a joint, major effort is needed in order to achieve a balance of power on 
an international level that lays the foundations for the decades to come.  
AI technology is becoming an integral part of IT systems and will drive innovation 
and the economy at large in many - if not all sectors. Such a key technology will 
have a significant effect on the prosperity of the EU and is interconnected with 
aspects of digital sovereignty. 
While we are in a decade of disruptive breakthroughs in AI technologies and sys-
tems, we equally see challenges and short-comings becoming more evident and 
apparent. The rapid transition into practice and deployment to millions of users, 
puts a magnifying glass on open challenges of safety, security as well as trustwor-
thiness of these systems in general. 
Basic, foundational research is the source of innovation chains that drive the AI 
ecosystem in compliance with our expectation on these shared societal values. 
Fundamental grand challenges demand fundamental solutions that will stand 
the test of time. Europe is traditionally strong in this regard. ELLIS has established 
an excellence driven, European AI network and ELSA is building on its momentum 
to spearhead the developments on safe and secure AI. 
Strong support of independent and open academic research is vital to balance 
huge industrial investments to make sure the technology develops in a way that 
benefits all, not just narrow industrial interests. This would support open source, 
transparent data provenance and models motivated by the issues of robustness, 
security and safety. 
With all its challenges and complications, the EU has pushed for a vision on how 
to regulate AI – a contribution that could not be more timely. It should be under-
stood as an opportunity to unite behind common goals also providing certainty 
and direction, rather than hampering innovation in this space. 
ELSA is connecting European experts on safe and secure AI, who serve as a think 
tank on this key, strategic topic. In this capacity, a closer dialogue with policy mak-
ers and industry is invited in order to set Europe on the right track for the coming 
decades. 
As technology is developing and deploying at such a rapid pace, there is a sub-
stantial risk to cause a disconnect and divide between society and technology. 
Therefore, a public debate should be fostered in order to have an informed discus-
sion, informed opinions, and informed decisions that ultimately empower people. 
In particular, when safety, security and trustworthiness is concerned, technology 
can only be part of the solution and solutions need to be human-centric. 
AI remains a technology with substantial risks and it is on us to innovate in com-
pliance with our societal values and decide where and how to use it in order to 
leverage its potential for societal good. We need a decisive and sustained invest-
ment to shape this technology in a European understanding. 
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