
ERC Advanced Grant 2022 — Research Proposal [Part B1]

Semantics of So�ware Systems
— S3 —

Principal Investigator (PI): Andreas Zeller
PI’s host institution: CISPA Helmholtz Center for Information Security
Project duration: 60 months

Summary

W��� �� we had software bots that tirelessly test, debug, and monitor our software sys-
tems? IT workers are expensive and scarce. So why can’t we further automate boring, repetitive

activities such as testing and debugging? The problem is that we lack computer-readable speci�cations
(so-called oracles) for what the system should do or not do. For decades, this oracle problem has been a
roadblock to automated test generation, trusted software repairs, and accurate monitoring of software.
Building on groundbreaking research to infer input languages of systems, S3 introduces a uni�ed

approach to learning oracles automatically. It takes a given software system; infers and decodes its inputs
and outputs; and runs experiments to extract models of how the system behaves, capturing its semantics
by predicting output features for given input features.
These models, named system invariants, allow to fully automate critical software development

activities:

Testing. System invariants encode languages for automatically generating test inputs and provide
oracles for checking test results: “In the TLS server, the hpayloadi in the hheartbeat-responsei must
be the same as in the hheartbeat-requesti.”

Debugging. System invariants allow narrowing down causes of software behavior (“The X.509 public
key certi�cate is not recognized if hsubject-namei contains a zero byte”). Generated tests and
oracles ensure reliable automated repair.

Monitoring. System invariants enable detecting abnormal behavior at runtime (“In log4j, logging a
huser-agenti containing "${jndi:hurli}" opens hurli”). Problematic queries can be isolated and
investigated until the problem is �xed.

In the future, testing, debugging, and monitoring would thus be taken over by software bots who would
autonomously explore software behavior, report issues, and suggest actions to their human co-workers,
boosting developer productivity and software reliability.

Zeller Part B1 S3

A Extended Synopsis of the Scientific Proposal

A.1 Objectives

With modern software development practices, humans can assemble feature-rich software systems from
powerful components. But the larger these systems become, the harder it is to test them—and when they
fail, developers are faced with millions of code lines that all could contribute to the failure.

Figure B1-1: Software development and IT operations with software bots

The aim of S3 is to fully automate testing, de-
bugging, and monitoring of complex software
systems. The idea is to have software bots that
autonomously write and execute software tests, de-
termine correct behavior, monitor systems in oper-
ation, diagnose failures and abnormal behavior, and
even repair code to reliably �x failures—reporting
and explaining their �ndings to developers and oper-
ators, who may customize and guide their activities
(Figure B1-1). Such software bots would substan-
tially reduce the cost of developing software
and considerably improve its reliability, while
humans would focus on the creative parts of developing software.

A.2 Challenges and State of the Art

Today, we do have software bots to run tests and monitor software. But these bots are dumb—for each bot
and each new software, a human must specify what to test and what to observe. In order to autonomously
create tests and debug and monitor some new software, bots �rst have to be able to interact with it—that is,
produce inputs, examine outputs, relate these to the inputs, and thus explore and check its functionality.
Such an autonomy, however, faces long-standing challenges:

First, there is the input generation problem: How can a bot create inputs that reliably cover functionality?
Random system input generators (“fuzzers” [31]) easily detect issues and vulnerabilities in input processing
of arbitrary programs. However, creating valid inputs and interactions that reliably reach code beyond
input processing is still a challenge, for which test generators still require human assistance—either through
input speci�cations [9, 8, 14, 19, 2, 34] or a comprehensive population of diverse input samples that cover
behavior [29, 44, 26, 6]. Without such assistance, a software bot is lost.
The biggest challenge, however, is the long-standing test oracle problem: How can a bot check the

outputs of a system? All test generators and fuzzers assume some oracle that checks for correctness—by
default, a generic oracle that detects illegal or unresponsive states. If, however, a bot is to run speci�c
checks, it needs a test oracle that retrieves and evaluates the relevant information from the output. Creating
oracles manually [38, 9, 25, 7, 32] is nontrivial and time-consuming: “Compared to many aspects of test
automation, the problem of automating the test oracle has received signi�cantly less attention, and remains
comparatively less well-solved.” [4].

Speci�cation mining and program synthesis techniques mine oracle candidates from a program [13, 1, 42,
17, 3] that match a set of given executions. Despite the progress made by these techniques, their fundamental
problem is that they risk over�tting to the given executions. If a sqrt(x) function, for instance, is only
called with x < 100, then a speci�cation miner like DAIKON [13] would infer that x < 100 is a precondition
of sqrt(x) (and sqrt(x) < 10 a postcondition). Using a generator to test sqrt(x) with more arguments
would be no help, as it might invoke the function with generated arguments that violate the implicit
precondition (say, with x = �1), and thus obtain executions with arbitrary results (“garbage in, garbage
out”). We thus have a chicken-and-egg problem here: To mine a speci�cation from generated inputs, we
need the test generator to respect the very preconditions we want to mine. As with test generation, mining
oracles thus needs a comprehensive population of diverse input samples that cover behavior.
The oracle problem not only a�ects the �nal result of a computation. If the bot is to interact with the

software and produce new inputs in reaction to output properties, we have the oracle problem at every step
of the interaction. This is why so much time goes into manual testing and debugging—and still, software
catastrophes like Heartbleed [10] or log4shell, the “largest vulnerability ever” [21], keep on haunting us.

B1-1

Zeller Part B1 S3

A.3 Approach: Learning and Leveraging System Invariants

In recent work, my team and I have pioneered groundbreaking techniques to automatically infer the input
language of a system—that is (1) input syntax, learning concise and well-structured grammars from how the
system decomposes and processes its inputs [20, 16], generating input samples as needed [28]; and (2) input
semantics as constraints detailing how grammar elements relate to each other [41]. From such grammars and
constraints, a testing bot can produce myriads of valid inputs, addressing the input generation problem.
These inputs are all produced at the system level, where it is the duty of the program under test to reject
any invalid input. Hence, we avoid the “garbage in, garbage out” problem and have only valid executions to
learn from, including input syntax and semantics.
We had an eureka moment when we realized that we can create similar techniques to also infer syntax

and semantics of system outputs, notably output grammars from how the system composes outputs; and
again constraints over grammar elements. A testing bot can thus decompose and check system outputs, even
in relation to earlier (given or generated) inputs—that is, it addresses the test oracle problem.
This leads us to the central novel concept of S3. System invariants express the semantics of software

systems as interleavings of grammars and constraints that characterize inputs, outputs, and their relations.
This includes �le and network data (bytes and characters); system and API interactions (calls and results); and
even graphical user interface interactions. Having once learned the invariants of a system, autonomous bots
can leverage them to test, monitor, and debug the system—without ever getting tired.

A.3.1 Learning Input Languages

Let us introduce the concept of system invariants with an example from the networking domain. The
Heartbeat extension [43] of a TLS server allows clients to check whether a server is still active, by sending a
0x1 byte followed by a payload, which the server is expected to include verbatim in its response.

hheartbeat_request i ::= 0x1 hpayload_lengthi hpayload i hpaddingi
hpayload_lengthi ::= huint16i
hpayload i ::= n | hbytei hpayload i
hpaddingi ::= n | hbytei hpaddingi

Figure B1-2: An input grammar for the TLS Heartbeat Extension

The syntax of such requests is easy to specify. The
grammar in Figure B1-2 identi�es the individual
elements in the request; we can use it to parse given
requests (and thus access and check its constituents),
but also to produce requests (and thus test the server).
Using a grammar as a producer ensures syntactic
validity. This makes test generation far more e�cient than generating and mutating random bytes, as valid
inputs reliably exercise functionality beyond input processing. (To test input processing and handling of
invalid inputs, we can still mutate valid inputs.)
In recent work [16, 20], my team and I have shown how to automatically extract input grammars from

existing programs. Our MIMID prototype takes a program and a set of diverse sample inputs (which we can
even generate from scratch [28]) and tracks where and how individual bytes in the input are processed.
Bytes that follow the same path form tokens; subroutines induce hierarchies. After re�ning grammars
through active learning, MIMID thus produces a context-free grammar that accurately represents the input
language of a program. As MIMID grammars reuse code identi�ers and re�ect code structure, no other
technique produces grammars that are even nearly as concise, structured, and well-readable.
So far, MIMID and similar techniques have assumed mostly text-based parsers with one input source.

However, its principles are also applicable to binary inputs and multiple I/O streams. Hence, with S3, the
grammar in Figure B1-2 could actually be extracted from a given TLS server and a set of traces, allowing for
massive testing of the Heartbeat extension.

A.3.2 Learning Interactions

To really test a system, we also must check its output. In our Heartbeat example, the server responds with a
0x2 byte, followed by the payload in the request and some padding. To specify the response, we could again
use a grammar. However, we also want to express that the response is the result of the request. For this, we
interleave request and response into a single I/O grammar [23] characterizing the interaction (Figure B1-3).

With such an I/O grammar, we can parse an entire client/server interaction to check whether a 0x1 client
request gets a proper 0x2 server response. However, we can also produce inputs for the server, expanding
hheartbeat_requesti, and then parse and check the server response. Alternatively, we can mock a server by

B1-2

Zeller Part B1 S3

parsing its input and then producing its output, expanding hheartbeat_responsei. By interleaving multiple
input and output sources in a single representation, we obtain a declarative speci�cation of interactions
that embeds all the expressiveness of �nite-state protocol speci�cations, yet is detailed enough to produce
valid inputs and check concrete outputs alike. Besides bytes and characters exchanged, I/O grammars can
also encode �le and system I/O, resource accesses, and even GUI interactions [48].

hexchangei ::= hheartbeat_request i hheartbeat_responsei
hheartbeat_request i ::= 0x1 hpayload_lengthi hpayload i hpaddingi
hheartbeat_responsei ::= 0x2 hpayload_lengthi hpayload i hpaddingi
hpayload_lengthi ::= huint16i
hpayload i ::= n | hbytei hpayload i
hpaddingi ::= n | hbytei hpaddingi
Figure B1-3: TLS Heartbeat I/O grammar. After a client sends a
hheartbeat_request i, the server responds with hheartbeat_responsei .

Our techniques for learning input grammars can
be equally applied for learning output grammars,
by tracking output bytes back to the methods that
produced them. As the S3 techniques easily produce
a wide diversity of inputs, we have a wide variety
of interactions to learn from.

A.3.3 Learning Constraints

Our grammar in Figure B1-3 still is not su�cient for testing, as we miss essential properties—for instance,
that the payload in request and response should be identical. Such equalities cannot be expressed in a
context-free grammar. However, we can represent these as additional constraints that express the relationship
between elements in the exchange. Such constraints are similar to function pre-/postconditions, except
that the role of function variables is taken by grammar nonterminals. They can thus make use of arbitrary
formalisms, expressing e.g. arithmetic, strings, sets, or temporal logic.

len
�
hpayload i

�
= uint16

�
hpayload_lengthi

�
 16357

hheartbeat_responsei. hpayload i = hheartbeat_request i. hpayload i
Figure B1-4: Constraints for the grammar in Figure B1-3: The payload
in hheartbeat_request i and hheartbeat_responsei must be identical.

Figure B1-4 lists such constraints for the grammar
in Figure B1-3. We see that hpayload_lengthi is the
length of the hpayloadi element (for both request and
response), and that the payload in request and re-
sponse must be identical.

I call the combination of an I/O grammar (Figure B1-3) and I/O constraints (Figure B1-4) a system invariant,
as it speci�es the possible interactions of systems as well as their pre- and postconditions. By separating
the formalisms for grammars and constraints, we can make use of e�cient grammar-based parsers and
producers, o�oading only the semantic aspects to checkers and solvers. The alternative, universally using
string constraints for lexical, syntactical, and semantic properties, would quickly overload a solver like Z3 [5,
“The solver isn’t particularly good at handling all cases around these”].

Manually speci�ed invariants can easily check concrete interactions. A Heartbleed attack, in which
hpayload_lengthi would be manipulated such that hheartbeat_responsei.hpayloadi would include private
server memory contents, would be immediately detected by violating the given constraints.

Such manual speci�cation is tiresome, though. Hence, a key idea of this proposal is to extract constraints
automatically from given traces and implementations. Notably, program synthesis techniques could system-
atically �nd predicates (constraints) that match the observed values of variables (nonterminals). But while
program synthesis may over�t to a small set of observed values, we can use the input grammar to generate
as many valid and diverse inputs as we see �t, and hence can have a myriad of interactions to learn from.
De�ning such constraints is feasible. Our ISLa input speci�cation language [41] allows expressing and

checking constraints like the ones in Figure B1-4. ISLa also serves as a producer, using the Z3 constraint solver
to produce semantically valid inputs. To the best of our knowledge, ISLa is the �rst and only declarative
language that can capture the full semantics of complex inputs for parsing and producing.
We can even learn constraints from given inputs, Our ISLearn prototype instantiates patterns from a

catalog to obtain invariant candidates [13]; to mine such constraints at the system level is also a �rst. Our
learner can thus easily detect that in all observed inputs, hpayload_lengthi is indeed the length of the payload
(Figure B1-4). While validating this invariant candidate, however, the learner would test the server with
counterexamples violating the payload length assumption, and thus immediately trigger the Heartbleed
vulnerability (Figure B1-5).

But how would a bot distinguish correct from incorrect behavior? Our learners can partition behavior
into syntactic and semantic equivalence classes. For Heartbeat, these classes would be: (1) a request where
the payload returned is identical; and (2) one where it is not (i.e., Heartbleed). With one invariant and
example for each, these two classes would be easy for humans to check; such di�erentiation would also
allow focusing on the most relevant invariants. If earlier runs or versions exist, though, our bots can focus
on new and unseen behavior [12], comparing behavior against invariants learned from existing runs and/or

B1-3

Zeller Part B1 S3

previous program versions. Output di�erences can be measured at syntactic and semantic levels, avoiding
spurious alarms due to minor di�erences such as time stamps or session keys.

hheartbeat_request i ::= 0x1 0x3�f "hello" 0x0 . . .
hheartbeat_responsei ::= 0x2 0x3�f "hello\0secret1\0secret2\0"

Figure B1-5: A concrete interchange leaking secrets

As a result, bots can produce concise and actionable
reports in which grammar elements abstract and generalize
problem circumstances [15, 24]: “If the hpayload_lengthi
�eld in the client request hheartbeat_requesti exceeds the
request length, then in the server hheartbeat_responsei, the hpayloadi is di�erent (Figure B1-5), in contrast
to all past runs. Are you aware of this?”

A.4 Risks and Gains

Let me be clear: What I have sketched above is a “happy path,” which assumes that lots of postulated
techniques would work as intended. Real-world system invariants will be far, far more complex than the
Heartbeat extension—the full TLS 1.3 speci�cation [37], for instance, encompasses 160 pages. Even though we
will be able to infer most or even all of a system’s I/O syntax, there is no way that S3 would be able to obtain
such full and precise semantics of systems fully automatically. That is because all synthesis and learning
techniques break down complex behavior into simple functions—and thus may produce approximations even
if given an in�nite supply of executions to learn from. However, even approximate and partial invariants
already su�ce to: (1) obtain high-level, declarative speci�cations of system behavior, to be read, re�ned,
and extended by humans; (2) have oracles that precisely check for these invariants; (3) generate myriads of
valid test inputs; (4) use executions from these test inputs to further re�ne invariants and oracles; (5) have
precise debugging and repair as our generated tests avoid over�tting; (6) can discover anomalies, subtle
bugs, and vulnerabilities in critical infrastructures; and (7) thus still reach our objective—software bots that
autonomously test, debug, and monitor given software.

A.5 Organization

WP1
(Foundations) ! WP2

(Mining) $ WP3
(Synthesizing)

system invariants

WP4
(Testing) $ WP5

(Debugging) $ WP6
(Monitoring)

Figure B1-6: S3 work packages

The S3 project comes in six work packages: WP1–WP3 cover
obtaining system invariants, notably foundations (WP1), min-
ing input languages (WP2), and synthesizing invariants (WP3).
WP4–WP6 apply system invariants in testing (WP4), debug-
ging (WP5), and monitoring (WP6).

Six Ph.D. students, each working on a WP for 3.5 years, will
be funded by the present proposal. Two postdocs who will
combine their own independent research agenda with S3 techniques (one for WP1–WP3, one for WP4–WP6)
and I (devoting 50% of working time to S3) will be funded through my resources at CISPA.

Figure B1-6 shows the information �ow between packages. While work packages are designed to bene�t
from each other and create synergies, each package can also be realized independently.

WP1: Foundations of System Invariants. In WP1, my team and I de�ne syntax and semantics of system
invariants, notably for stateful and reactive systems, building on our experience in specifying complex
input languages [41]. This includes research to: (1) specify vocabularies and libraries for common
system invariants; (2) track access to system resources, notably reading and writing to multiple
channels; (3) track nonfunctional properties such as resource usage, �ows, or dependencies [27],
timing, frequency, or thread schedules; and (4) tie multiple layers of encoding and encryption. We
will run case studies, creating invariants for protocols such as FTP [36], SMTP [35], or TLS [37].

WP2: Mining Input Languages. In WP2, we mine input languages from existing systems to express their set
of valid inputs; these form system preconditions. We build on our experience in mining input grammars
[16, 20] and track input elements throughout program executions to infer input structure as well as
semantic constraints. Challenges include: (1) systematically re�ning input languages by checking
whether inputs generated from them are accepted by the system under test; (2) detecting processing
layers (say, scanning XML tokens, parsing XML syntax, processing an XML tree); and (3) detecting
constraints such as length �elds or checksums.

WP3: Synthesizing System Invariants. In WP3, we mine the syntax and semantics of system outputs, ex-
pressed as grammars and relationships between input and output elements, e�ectively acting as

B1-4

Zeller Part B1 S3

system postconditions. This includes: (1) learning output grammars from given systems; (2) synthe-
sizing semantic properties using pattern catalogs and program synthesis techniques; (3) developing
di�erentiation techniques to determine the properties most relevant for some outcome; and (4) re�ning
properties through generated test cases.

WP4: Testing with System Invariants. WP4 makes use of the system invariants speci�ed in WP1 (or mined
in WP2 and WP3) to thoroughly test existing systems. This builds on our experience in systematically
generating highly complex inputs [41, 18, 11]. We will research means to: (1) use system invariants as
oracles; (2) use invariants as mock objects during testing; (3) achieve systematic coverage over input
and output elements, constraint conditions, and their combinations; and (4) develop a methodology
for invariant-driven development, re�ning hand-speci�ed invariants into implementations. As a result,
we obtain fully automated testing techniques that e�ectively and e�ciently explore program behavior
and �ag unexpected outcomes.

WP5: Debugging with System Invariants. In WP5, my team and I generate diagnoses and repairs for failures.
Based on our experience in leveraging input grammars to determine failure circumstances [15, 24],
my team and I will research how to derive invariants that characterize failing runs (in contrast to
passing runs). Such invariants not only explain failure conditions, but also produce further test inputs
that trigger the failure; generated tests and oracles then guide and validate automated software repair.

WP6: Monitoring with System Invariants. In WP6, we want to raise anomaly detection to a higher level.
We �rst learn system invariants from (generated) tests and/or in production. Again, the resulting
invariants would express high-level syntactic and semantic I/O properties, but also resource accesses
dependent on earlier inputs—allowing a far higher expressiveness and abstraction level than the
generic checks in common intrusion detection systems. Our bots can then continuously and e�ciently
check system invariants; in case of a violation, they would diagnose the precise circumstances of
an attack and isolate matching inputs. Untrusted systems and components could be constrained to
extracted and assessed invariants, preventing latent malicious behavior [22].

To implement and evaluate our techniques, my team and I will �rst build prototypes in and for PYTHON
programs. Our experience with our interactive textbooks on test generation [47] and debugging [46] has
shown us that in PYTHON, novel techniques for dynamic instrumentation and analysis can be implemented
orders of magnitude faster than with traditional compiled languages such as C or JAVA.

Having thus re�ned our algorithms and techniques, we will instantiate them for C programs and integrate
them into bots for testing, debugging, and monitoring real-world servers and interactive systems. Our
evaluation will focus on traditional accuracy measures. For WP4, the question will be how well mined system
invariants approximate input and output languages; for WP5, how well they capture failure conditions; and
for WP6, how well they identify attacks and abnormal behavior. The goal is to have a high recall (= missing
few bugs / failure conditions / attacks) and a high precision (= reporting few false alarms).

The S3 techniques will become available as: (1) open source textbooks that demonstrate all concepts with
interactive, well-documented code and examples, allowing for easy replication and extension; and (2) open
source software bots for autonomous testing, debugging, and monitoring of real-world software.

A.6 Impact

S3 will not only produce autonomous software bots for testing, debugging, and monitoring, but also detect
(and �x) signi�cant bugs in day-to-day systems. Catching just one vulnerability before it goes into production
might be worth more than the entire cost of this research.
But S3 also unlocks synergies with other research �elds, as its system invariants provide a de facto

in�nite supply of tests, with hundreds of input, output, and execution features available for analysis and
learning. Mining function speci�cations [13] can �nally become precise, providing pre- and postconditions
to boost symbolic reasoning and veri�cation; these invariants could even refer to input and con�guration
properties. Network and security protocols would be supplied with formal speci�cations for inspection and
veri�cation [30]. Inferring system invariants from opaque systems such as trained machine learning models
would reverse engineer them [33], explaining and predicting their behavior based on myriads of experiments.

Developers today spend 50% of their time on testing and debugging, and still cannot eradicate all software
bugs and vulnerabilities. The gains in productivity and reliability by S3 software bots could be considerable—
up to even being measurable in the gross national product of Europe and the world.

B1-5

Zeller Part B1 S3

B Curriculum Vitae: Andreas Zeller

Born October 28, 1965, in Hanau, Germany
CISPA Helmholtz Center for Information Security and Saarland University , Saarbrücken, Germany
ACM Fellow · Six 10-Year Impact Paper Awards · 21,000+ citations · h-index � 60
+49 681 87083-2372 · zeller@cispa.de · https://andreas-zeller.info · ORCID 0000-0003-4719-8803

Andreas Zeller is one of Europe’s most in�uential researchers in Software Engineering. He has made
fundamental contributions to automated debugging and mining software repositories, including:

• Zeller’s Delta Debugging algorithm [45, 49], which automatically reduces failure-inducing changes
and inputs to a minimum, is at the core of most approaches of automated debugging and repair of
software.

• Mining Software Histories to Guide Software Changes [50] pioneered the �eld of mining software
repositories and is one of the most-cited papers in Software Engineering.

• The SZZ algorithm [39], linking bug archives and version histories, is at the heart of most approaches
mining past �xes and predicting defects.

All these contributions have their origin in Zeller’s 1997 Ph.D. work on software versioning, have been
cited thousands of times, and won multiple test of time awards by the community. Zeller’s recent research
focuses on inferring input formats [20, 16] and leveraging these for testing [19, 40] and debugging [15, 24].

B.1 Education
1997 Ph.D. in Computer Science, TU Braunschweig (summa cum laude)
1991 Diploma in Computer Science, TU Darmstadt (passed with distinction)

B.2 Positions
2019–present Faculty, CISPA Helmholtz Center for Information Security, Germany
2003–present Full Professor, Computer Science, Saarland University, Germany
2001–2003 Associate Professor (C3), Computer Science, Saarland University, Germany
1999–2001 Post-Doc Researcher (C1), Computer Science, Passau University, Germany
1997–1999 Post-Doc Researcher (C1), Computer Science, TU Braunschweig, Germany
1991–1997 Scienti�c Assistant, Computer Science, TU Braunschweig, Germany
Guest researcher/lecturer at Microsoft Research, Redmond, USA (2011, 2009, 2005); ETH Zürich, Switzerland
(2007); and University of Washington, USA (2005).

B.3 Career-Long Contribution Awards

2019 IFIP Fellow (IFIP’s recognition of substantial and enduring contributions to the ICT industry)
2018 ACM SIGSOFT Outstanding Research Award (The highest research award by ACM SIGSOFT, the

ACM special interest group on software engineering)
2010 ACM Fellow (ACM’s most prestigious member grade recognizing the top 1% of members for their

outstanding accomplishments) for “contributions to automated debugging and mining software
archives,” two �elds I helped to shape.

B.4 Test of Time Awards

2021 ICST 2021 10-Year Most In�uential Paper Award for “Assessing Oracle Quality with Checked
Coverage” (ICST 2011; with David Schuler)

2020 ISSTA 2020 10-Year Impact Paper Award for “Mutation-Driven Generation of Unit Tests and
Oracles” (ISSTA 2010; with Gordon Fraser)

2017 MSR 10-Year Most In�uential Paper Award for “How Long Will It Take to Fix This Bug?” (MSR
2007; with Cathrin Weiß, Rahul Premraj, and Thomas Zimmermann)

2015 MSR 10-Year Most In�uential Paper Award for “When do Changes induce Fixes?” (MSR 2005;
with Jacek Śliwerski and Thomas Zimmermann)

B1-6

https://www.cispa.de/
https://www.cs.uni-saarland.de/
tel:+49681870832372
mailto:zeller@cispa.de
https://andreas-zeller.info
https://orcid.org/0000-0003-4719-8803
https://cispa.de/en/research/publications/2439-assessing-oracle-quality-with-checked-coverage
https://cispa.de/en/research/publications/2439-assessing-oracle-quality-with-checked-coverage
https://ieeexplore.ieee.org/document/6019060
https://ieeexplore.ieee.org/document/6019060
https://ieeexplore.ieee.org/document/4228638
https://dl.acm.org/doi/10.1145/1082983.1083147

Zeller Part B1 S3

2015 ICSE 10-Year Most In�uential Paper Award, O�cial Runner-Up (one of two runner-up papers)
for “Locating Causes of Program Failures” (ICSE 2005; with Holger Cleve)

2014 ICSE 10-Year Most In�uential Paper Award for “Mining Software Histories to Guide Software
Changes” (ICSE 2004; with Thomas Zimmermann, Peter Weißgerber, and Stephan Diehl)

2009 ACM SIGSOFT 10-Year Impact Award for “Yesterday, my program worked. Today, it does not.
Why?” (ESEC 1999; single author).

B.5 Supervision of Graduate Students and Postdoctoral Fellows

2001–present 17 Ph.D.s completed, 2 Ph.D.s to complete in 2022, 5 Ph.D.s currently supervised
10 Post-Docs completed, 2 Post-Docs currently associated, all CISPA and Saarland U

B.6 Teaching Activities

2021 Interactive textbook “The Debugging Book”
2019 Interactive textbook “The Fuzzing Book” (with Gopinath, Böhme, Fraser, Holler)
2018–present Course of studies “Entrepreneurial Cybersecurity” (Saarland Teaching Award 2020)
2012 Udacity Online course CM259 “Software Debugging” (commissioned by Udacity)
2005 Textbook “Why Programs Fail”, Morgan Kaufmann Editors
1997–present Courses on Software Engineering, Introduction to Programming, Program Analysis,

Software Testing, Security Testing, Automated Debugging.

B.7 Organization of Scientific Meetings

2022 Program Chair ACM/IEEE International Conference on Software Engineering
(ICSE 2022; co-chaired with Daniela Damian)

2020 Program Chair IEEE International Conference on Software Testing and Veri�cation
(ICST 2020; co-chaired with Corina Păsăreanu)

2016 General Chair IEEE European Symposium on Security and Privacy (EuroS&P 2016)
2016 General Chair ACM International Symposium on Software Testing and Analysis

(ISSTA 2016)
2013 Program Chair ACM/IEEE International Conference on Automated Software

Engineering (ASE 2013; co-chaired with Tev�k Bultan)
Co-Organizer of three Dagstuhl Seminars in the past ten years (2015, 2017, 2023).

B.8 Institutional Responsibilities

2016–2018 Elected member, Saarland University Senate
2008–2018 Scienti�c Vice-Coordinator, Saarbrücken Graduate School for Computer Science
2001–2018 Head of the Software Engineering Chair at Saarland University

B.9 Commissions of Trust
2018–present Steering Committee, International Conference on Software Engineering (ICSE)
2016–present Research Highlights Editorial Board, Communications of the ACM
2016–present Editorial Board, Journal of Software Testing, Veri�cation and Reliability
2008–present Steering Committee, Int. Symposium on Software Testing and Analysis (ISSTA)
2011–2020 National DFG Proposal Review Panel for Computer Science, Elected Member
2013–2017 Editorial Board, IEEE Transactions on Software Engineering (TSE)
2009–2017 Editorial Board, Springer Journal on Empirical Software Engineering (ESEM)
2011–2016 Steering Committee, European Software Engineering Conference (ESEC)

B1-7

https://dl.acm.org/citation.cfm?id=1062522
https://dl.acm.org/doi/10.5555/998675.999460
https://dl.acm.org/doi/10.5555/998675.999460
https://dl.acm.org/doi/10.1145/318774.318946
https://dl.acm.org/doi/10.1145/318774.318946
https://www.debuggingbook.org/
https://www.fuzzingbook.org/

Zeller Part B1 S3

Appendix: All ongoing grants and submi�ed grant applications of the PI (Funding ID)

Ongoing Grants
Project Title Funding

Source
Amount Period Role of

the PI
Relation to S3 Proposal

EMPEROR: Learning Causes
of Program Behavior

DFG grant 220,000 e 2021–2024 Co-PI1 no overlap; explores using ML
classi�ers for ALHAZEN [24]

CPSec: E�ective Testing of
Cyber-Physical Systems

BMBF grant 3,200,000 e 2022–2024 Co-PI2 no overlap; explores di�eren-
tial fuzzing

Grant Applications

(none)

1Project with Co-PI Lars Grunske, Berlin, totaling one Ph.D. student for three years under supervision of the PI
2Project with Co-PI Thorsten Holz (CISPA), Robert Bosch GmbH, and let’s dev GmbH & Co. KG, NXP Semiconductors Germany
GmbH, totaling two Ph.D. students for three years under supervision of the PI

B1-8

Zeller Part B1 S3

C Ten-Year Track Record: Andreas Zeller

C.1 Ten Representative Publications

1. G. Fraser and A. Zeller. Mutation-driven generation of unit tests and oracles . IEEE Transactions on
Software Engineering (TSE), 2011, 38(2), pp. 278–292 and ISSTA 2010. https://doi.org/10.1109/TSE.2011.93
B This paper introduced test oracle inference at the unit level, using mutation analysis

2. V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack, and A. Zeller. Automatically Generating Test
Cases for Speci�cation Mining . IEEE Transactions on Software Engineering (TSE), 2011, 38(2), pp.
243–257. http://dx.doi.org/10.1109/TSE.2011.105
B This paper pioneered the use of generating test cases for mining (state machine) speci�cations.

3. C. Holler, K. Herzig, and A. Zeller. Fuzzing with Code Fragments . In USENIX Security Symposium,
2012, pp. 38–48. https://www.usenix.org/conference/usenixsecurity12/ technical-sessions/presentation/
holler
B The LANGFUZZ tool introduced grammar-based test generation to the security community.

4. A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking App Behavior against App Descriptions .
In ACM/IEEE International Conference on Software Engineering (ICSE), 2014, pp. 1025–1035. http:
//dx.doi.org/10.1145/2568225.2568276
B CHABADA introduced checking program behavior (notably the API usage of apps) against natural
language descriptions (app descriptions).

5. K. Jamrozik, P. von Styp-Rekowsky, and A. Zeller. Mining Sandboxes . In ACM/IEEE International
Conference on Software Engineering (ICSE), 2016, pp. 37–48. http://dx.doi.org/10.1145/2884781.2884782
B This paper introduced the idea of mining behavior constraints to later enforce them.

6. B. Mathis, R. Gopinath, M. Mera, A. Kampmann, M. Höschele, and A. Zeller. Parser-Directed
Fuzzing . In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI)
2019, pp. 548–560. https://doi.org/10.1145/3314221.3314651
B This paper showed how to leverage dynamic analysis to systematically explore all branches of a
parser and hence obtain a set of samples for grammar mining.

7. R. Gopinath, M. Mathis, and A. Zeller. Mining Input Grammars from Dynamic Control Flow . In
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE), 2020. https://doi.org/10.1145/3368089.3409679
B The MIMID tool is our latest input grammar miner, automatically extracting a concise, well-structured,
and well-readable grammar from a program and a set of inputs.

8. R. Gopinath, A. Kampmann, N. Havrikov, E. Soremekun, and A. Zeller. Abstracting Failure-Inducing
Inputs . In ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), 2020.
https://doi.org/10.1145/3395363.3397349
B This paper shows how to leverage grammars to abstract failure-inducing inputs into general patterns
that explain failures and produce further failing test inputs.

9. A. Kampmann, N. Havrikov, E. Soremekun, and A. Zeller. When does my Program do this? Learning
Circumstances of Software Behavior . In Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), 2020.
https://doi.org/10.1145/3368089.3409687
B The ALHAZEN tool systematically explores program behavior, re�ning and validating hypothesis to
determine failure circumstances.

10. E. Soremekun, E. Pavese, N. Havrikov, L. Grunske, and A. Zeller. “Inputs from Hell: Learning Input
Distributions for Grammar-Based Test Generation.” In IEEE Transactions on Software Engineering
(TSE), 2020. https://doi.org/10.1109/TSE.2020.3013716
B This paper showed how to learn distributions of input elements to direct test generation towards
common and uncommon inputs.

B1-9

https://doi.org/10.1109/TSE.2011.93
https://doi.org/10.1109/TSE.2011.93
http://dx.doi.org/10.1109/TSE.2011.105
http://dx.doi.org/10.1109/TSE.2011.105
http://dx.doi.org/10.1109/TSE.2011.105
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
http://dx.doi.org/10.1145/2568225.2568276
http://dx.doi.org/10.1145/2568225.2568276
http://dx.doi.org/10.1145/2568225.2568276
http://dx.doi.org/10.1145/2884781.2884782
http://dx.doi.org/10.1145/2884781.2884782
https://doi.org/10.1145/3314221.3314651
https://doi.org/10.1145/3314221.3314651
https://doi.org/10.1145/3314221.3314651
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1145/3395363.3397349
https://doi.org/10.1145/3395363.3397349
https://doi.org/10.1145/3395363.3397349
https://doi.org/10.1145/3368089.3409687
https://doi.org/10.1145/3368089.3409687
https://doi.org/10.1145/3368089.3409687
https://doi.org/10.1109/TSE.2020.3013716
https://doi.org/10.1109/TSE.2020.3013716
https://doi.org/10.1109/TSE.2020.3013716

Zeller Part B1 S3

C.2 Patents

• A. Zeller and K. Jamrozik. 2016. “Mining Sandboxes”, European Patent WO 2016/131830 A1 .
• N. Nagappan, T. Zimmermann, B. Murphy, and A. Zeller. 2016. “Predicting Defects in Code”, US
Patent 9378015.

C.3 Keynotes at International Conferences, Summer Schools

FUZZING (2022) · “Cyber in Nancy” Summer School, Nancy, France (2022) · ASE (2021) · ISSTA (2020) ·
MOBILEsoft (2020) · ICSE (2018) · RV (2017) · MSR (2017) · ICST (2017) · Halmstad Summer School on
Software Testing, Halmstad, Sweden (2017) · ICPC (2015) · ICSE (2014) · ICMT (2013) · SPIN (2012)

C.4 Organization of International Conferences

• ACM SIGSOFT/IEEE TCSE International Conference on Software Engineering (ICSE) —
Program Co-Chair (2022) · Program Board Member (2018, 2016) · Doctoral Symposium Chair (2012)
· PC Member (2023, 2021, 2020, 2017, 2015, 2014, 2013) · Steering Committee Member (2018–)

• ACM SIGSAC Computer and Communications Security (CCS) — PC Member (2021, 2022)
• ACM SIGPLAN Programming Language Design and Implementation (PLDI) — PC Member
(2017, 2021)

• IEEE International Conference on Software Testing and Veri�cation (ICST) — Program Co-
Chair (2020) · Steering Committee Member (2020–)

• European Symposium on Security and Privacy (EuroS&P) — General Chair (2016)
• ACM International Conference on Software Testing and Analysis (ISSTA) — General Chair
(2016) · Steering Committee Chair (2016–2017) · PC Member (2022, 2020, 2018, 2013)

• IEEE/ACM Conference on Automated Software Engineering (ASE) — Program Co-Chair (2013)
· PC Member (2017, 2014)

• ACM SIGSOFT Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE) — Doctoral Symposium Chair (2017) · PC
Member (2019, 2017, 2015, 2013) · Steering Committee Member (2009–2016)

• Dagstuhl Seminars — Co-Organizer (“Software Bug Detection: Challenges and Synergies”, 2023 ·
“Testing and Veri�cation of Compilers”, 2017 · “Artifact Evaluation for Publications”, 2015)

C.5 Major Contributions to the Early Careers of Excellent Researchers

Thomas Zimmermann (Senior Principal Researcher at Microsoft Research; Associate Professor at Univer-
sity of Calgary) did his Master thesis (2001) and Ph.D. thesis (2006) with me, shaping and pioneering
the new research �eld of Mining Software Repositories. As ACM Fellow and elected president of
ACM SIGSOFT, Thomas is now one of today’s most in�uential Software Engineering researchers.

Gordon Fraser · Marcel Böhme · Alessandra Gorla · Juan Pablo Galeo�i · Rahul Gopinath are
former Post-Docs now occupying excellent positions—Gordon Fraser is full professor at Passau
University; Marcel Böhme is junior faculty at the Max Planck Institute for Security and Privacy in
Bochum; Alessandra Gorla is assistant researcher professor at the IMDEA Software Institute in
Madrid; Juan Pablo Galeotti is professor at the University of Buenos Aires; and Rahul Gopinath is
assistant professor in Sydney.

C.6 Examples of Leadership in Industrial Innovation or Design

Testfabrik AG , founded in 2011, generates and runs tests for Web applications and mobile apps. After
attracting more than 1 million e in startup funding and awards as co-founder, Testfabrik currently
has 20+ full-time employees; I serve as chair of the supervisory board.

B1-10

https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20160825&CC=WO&NR=2016131830A1&KC=A1
http://www.thomas-zimmermann.com/
https://www.fim.uni-passau.de/en/chair-for-software-engineering-ii/
https://mboehme.github.io
http://software.imdea.org/~alessandra.gorla/
https://lafhis.dc.uba.ar/~jgaleotti
https://rahul.gopinath.org
http://www.testfabrik.com/

Zeller Part B1 S3

References

[1] G. Ammons, R. Bodík, and J. R. Larus. Mining speci�cations . In ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (POPL), pages 4–16, Portland, Oregon, 2002. ACM. http://doi.acm.org/10.1145/503272.
503275 (Page B1-1)

[2] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert. NAUTILUS: Fishing for
deep bugs with grammars. In Network and Distributed System Security Symposium (NDSS), 2019. https:
//www.ndss-symposium.org/ndss-paper/nautilus-�shing-for-deep-bugs-with-grammars/ (Page B1-1)

[3] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. DeepCoder: Learning to write programs ,
2017. https://arxiv.org/abs/1611.01989 (Page B1-1)

[4] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in software testing: A survey .
IEEE Transactions on Software Engineering (TSE), 41(5):507–525, 2014. https://doi.org/10.1109/TSE.2014.2372785
(Page B1-1)

[5] N. Bjørner. Z3 fails to terminate despite set timeout. https://github.com/Z3Prover/z3/ issues/5891#
issuecomment-1063110825, March 2022. (Page B1-3)

[6] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox fuzzing as Markov chain . In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, pages 1032–1043, New
York, NY, USA, 2016. Association for Computing Machinery. https://doi.org/10.1145/2976749.2978428 (Page B1-1)

[7] G. Booch. The Uni�ed Modeling Language user guide. Addison Wesley, 2005. (Page B1-1)

[8] L. C. Briand and Y. Labiche. A UML-based approach to system testing . In International Conference on the
Uni�ed Modeling Language, Modeling Languages, Concepts, and Tools (UML), pages 194–208. Springer, 2001.
https://dl.acm.org/doi/10.5555/647245.719446 (Page B1-1)

[9] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random testing of haskell programs . In
Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP), ICFP ’00, pages
268–279, New York, NY, USA, 2000. Association for Computing Machinery. https://doi.org/10.1145/351240.351266
(Page B1-1)

[10] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey, and
J. A. Halderman. The matter of Heartbleed . In Proceedings of the 2014 Conference on Internet Measurement
Conference, IMC ’14, pages 475–488, New York, NY, USA, 2014. Association for Computing Machinery. https:
//doi.org/10.1145/2663716.2663755 (Page B1-1)

[11] R. Dutra, R. Gopinath, and A. Zeller. FormatFuzzer: E�ective fuzzing of binary �le formats . CoRR,
abs/2109.11277, 2021. https://arxiv.org/abs/2109.11277 Submitted for publication at ACM TOSEM. Project
home page at https://uds-se.github.io/FormatFuzzer/ . (Page B1-5)

[12] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior: A general approach to inferring
errors in systems code . SIGOPS Oper. Syst. Rev., 35(5):57–72, oct 2001. https://doi.org/10.1145/502059.502041
(Page B1-3)

[13] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program invariants to
support program evolution . IEEE Transactions on Software Engineering (TSE), 27(2):99–123, February 2001.
https://doi.org/10.1109/32.908957 (Pages B1-1, B1-3, and B1-5)

[14] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing . In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 206–215. ACM, 2008. https://doi.org/10.1145/
1375581.1375607 (Page B1-1)

[15] R. Gopinath, A. Kampmann, N. Havrikov, E. O. Soremekun, and A. Zeller. Abstracting failure-inducing
inputs . In ACM International Symposium on Software Testing and Analysis (ISSTA), pages 237–248. ACM, 2020.
https://doi.org/10.1145/3395363.3397349 (Pages B1-4, B1-5, and B1-6)

[16] R. Gopinath, B. Mathis, and A. Zeller. Mining input grammars from dynamic control �ow . In Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), November 2020. https://publications.cispa.saarland/3101/ (Pages B1-2, B1-4, and B1-6)

[17] S. Gulwani, O. Polozov, and R. Singh. Program synthesis . Foundations and Trends in Programming Languages,
4(1-2):1–119, 2017. http://dx.doi.org/10.1561/2500000010 (Page B1-1)

[18] N. Havrikov and A. Zeller. Systematically covering input structure . In IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 189–199. IEEE, 2019. https://doi.org/10.1109/ASE.2019.00027
(Page B1-5)

B1-11

http://doi.acm.org/10.1145/503272.503275
http://doi.acm.org/10.1145/503272.503275
http://doi.acm.org/10.1145/503272.503275
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://arxiv.org/abs/1611.01989
https://arxiv.org/abs/1611.01989
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://github.com/Z3Prover/z3/issues/5891#issuecomment-1063110825
https://github.com/Z3Prover/z3/issues/5891#issuecomment-1063110825
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://dl.acm.org/doi/10.5555/647245.719446
https://dl.acm.org/doi/10.5555/647245.719446
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://arxiv.org/abs/2109.11277
https://arxiv.org/abs/2109.11277
https://uds-se.github.io/FormatFuzzer/
https://doi.org/10.1145/502059.502041
https://doi.org/10.1145/502059.502041
https://doi.org/10.1145/502059.502041
https://doi.org/10.1109/32.908957
https://doi.org/10.1109/32.908957
https://doi.org/10.1109/32.908957
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/3395363.3397349
https://doi.org/10.1145/3395363.3397349
https://doi.org/10.1145/3395363.3397349
https://publications.cispa.saarland/3101/
https://publications.cispa.saarland/3101/
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
https://doi.org/10.1109/ASE.2019.00027
https://doi.org/10.1109/ASE.2019.00027

Zeller Part B1 S3

[19] C. Holler, K. Herzig, and A. Zeller. Fuzzing with code fragments . In USENIX Security Symposium, pages 38–38,
Bellevue, WA, 2012. USENIX Association. https://www.usenix.org/ conference/usenixsecurity12/ technical-sessions/
presentation/holler (Pages B1-1 and B1-6)

[20] M. Höschele and A. Zeller. Mining input grammars from dynamic taints . In IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 720–725, Singapore, Singapore, 2016. ACM. http:
//doi.acm.org/10.1145/2970276.2970321 (Pages B1-2, B1-4, and B1-6)

[21] T. Hunter and G. de Vynck. The “most serious security breach ever” is unfolding right now . Wall Street
Journal, December 2021. https://www.washingtonpost.com/ technology/2021/12/20/ log4j-hack-vulnerability-java/
(Page B1-1)

[22] K. Jamrozik, P. von Styp-Rekowsky, andA. Zeller. Mining sandboxes . In ACM/IEEE International Conference on
Software Engineering (ICSE), pages 37–48, Austin, Texas, 2016. ACM. http://doi.acm.org/10.1145/2884781.2884782
(Page B1-5)

[23] B. Jones, M. Harman, and S. Danicic. Automated construction of input and output grammars . Technical
report, University of North London, August 1999. https://www.researchgate.net/publication/2448384_Automated_
Construction_of_Input_and_Output_Grammars (Page B1-2)

[24] A. Kampmann, N. Havrikov, E. Soremekun, and A. Zeller. When does my program do this? Learn-
ing circumstances of software behavior . In Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), 2020. https:
//publications.cispa.saarland/3107/ (Pages B1-4, B1-5, B1-6, and B1-8)

[25] S. Kent. Model driven engineering . In International conference on integrated formal methods, pages 286–298.
Springer, 2002. https://dl.acm.org/doi/10.5555/647983.743552 (Page B1-1)

[26] Libfuzzer. https:// llvm.org/docs/LibFuzzer.html. Retrieved 2022-02-01. (Page B1-1)

[27] B. Mathis, V. Avdiienko, E. O. Soremekun, M. Böhme, and A. Zeller. Detecting information �ow by mutating
input data . In IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 263–273.
IEEE, 2017. https://doi.org/10.1109/ASE.2017.8115639 (Page B1-4)

[28] B. Mathis, R. Gopinath, M. Mera, A. Kampmann, M. Höschele, and A. Zeller. Parser-directed fuzzing . In ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 548–560. ACM, 2019.
https://doi.org/10.1145/3314221.3314651 (Page B1-2)

[29] P. McMinn. Search-based software testing: Past, present and future. In 2011 IEEE Fourth International Conference
on Software Testing, Veri�cation and Validation Workshops, pages 153–163. IEEE, 2011. (Page B1-1)

[30] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN prover for the symbolic analysis of security
protocols . In N. Sharygina and H. Veith, editors, Computer Aided Veri�cation, pages 696–701, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39799-8_48 (Page B1-5)

[31] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of UNIX utilities . Communications of
the ACM, 33(12):32–44, December 1990. http://doi.acm.org/10.1145/96267.96279 (Page B1-1)

[32] M. Mussa, S. Ouchani, W. A. Sammane, and A. Hamou-Lhadj. A survey of model-driven testing techniques . In
2009 Ninth International Conference on Quality Software, pages 167–172, 2009. https://doi.org/10.1109/QSIC.2009.30
(Page B1-1)

[33] S. J. Oh, B. Schiele, and M. Fritz. Towards Reverse-Engineering Black-Box Neural Networks , pages 121–144.
Springer International Publishing, Cham, 2019. https://doi.org/10.1007/978-3-030-28954-6_7 (Page B1-5)

[34] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A. Roychoudhury. Smart greybox fuzzing . IEEE
Transactions on Software Engineering (TSE), 47(9):1980–1997, 2019. https://doi.org/10.1109/TSE.2019.2941681
(Page B1-1)

[35] J. B. Postel. Simple mail transfer procotol (SMTP) . RFC 821, Internet Engineering Task Force (IETF), August 1982.
https://datatracker.ietf.org/doc/ rfc821/ (Page B1-4)

[36] J. B. Postel and J. Reynolds. File transfer protocol (FTP) . RFC 959, Internet Engineering Task Force (IETF), October
1985. https://datatracker.ietf.org/doc/ rfc8446/ (Page B1-4)

[37] E. Rescorla. The transport layer security (TLS) protocol version 1.3 . RFC 8446, Internet Engineering Task Force
(IETF), August 2018. https://datatracker.ietf.org/doc/ rfc8446/ (Page B1-4)

[38] D. Rosenblum. A practical approach to programming with assertions . IEEE Transactions on Software Engineering,
21(1):19–31, 1995. https://doi.org/10.1109/32.341844 (Page B1-1)

B1-12

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
http://doi.acm.org/10.1145/2970276.2970321
http://doi.acm.org/10.1145/2970276.2970321
http://doi.acm.org/10.1145/2970276.2970321
https://www.washingtonpost.com/technology/2021/12/20/log4j-hack-vulnerability-java/
https://www.washingtonpost.com/technology/2021/12/20/log4j-hack-vulnerability-java/
http://doi.acm.org/10.1145/2884781.2884782
http://doi.acm.org/10.1145/2884781.2884782
https://www.researchgate.net/publication/2448384_Automated_Construction_of_Input_and_Output_Grammars
https://www.researchgate.net/publication/2448384_Automated_Construction_of_Input_and_Output_Grammars
https://www.researchgate.net/publication/2448384_Automated_Construction_of_Input_and_Output_Grammars
https://publications.cispa.saarland/3107/
https://publications.cispa.saarland/3107/
https://publications.cispa.saarland/3107/
https://publications.cispa.saarland/3107/
https://dl.acm.org/doi/10.5555/647983.743552
https://dl.acm.org/doi/10.5555/647983.743552
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1109/ASE.2017.8115639
https://doi.org/10.1109/ASE.2017.8115639
https://doi.org/10.1109/ASE.2017.8115639
https://doi.org/10.1145/3314221.3314651
https://doi.org/10.1145/3314221.3314651
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
http://doi.acm.org/10.1145/96267.96279
http://doi.acm.org/10.1145/96267.96279
https://doi.org/10.1109/QSIC.2009.30
https://doi.org/10.1109/QSIC.2009.30
https://doi.org/10.1007/978-3-030-28954-6_7
https://doi.org/10.1007/978-3-030-28954-6_7
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/TSE.2019.2941681
https://datatracker.ietf.org/doc/rfc821/
https://datatracker.ietf.org/doc/rfc821/
https://datatracker.ietf.org/doc/rfc8446/
https://datatracker.ietf.org/doc/rfc8446/
https://datatracker.ietf.org/doc/rfc8446/
https://datatracker.ietf.org/doc/rfc8446/
https://doi.org/10.1109/32.341844
https://doi.org/10.1109/32.341844

Zeller Part B1 S3

[39] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce �xes? In Proceedings of the 2005
International Workshop on Mining Software Repositories, MSR ’05, pages 1–5, New York, NY, USA, 2005. Association
for Computing Machinery. https://doi.org/10.1145/1083142.1083147 (Page B1-6)

[40] E. Soremekun, E. Pavese, N. Havrikov, L. Grunske, and A. Zeller. Inputs from hell: Learning input distributions
for grammar-based test generation . IEEE Transactions on Software Engineering (TSE), 48(4):1138–1153, 2022.
https://doi.org/10.1109/TSE.2020.3013716 (Page B1-6)

[41] D. Steinhöfel and A. Zeller. Input invariants . Technical report, CISPA Helmholtz Center for Information
Security, March 2022. https://publications.cispa.saarland/3596/ Submitted for publication at ESEC/FSE 2022.
(Pages B1-2, B1-3, B1-4, and B1-5)

[42] W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer,
1st edition, 2011. (Page B1-1)

[43] M. Williams, M. Tüxen, and R. Seggelmann. Transport layer security (TLS) and datagram transport layer
security (DTLS) heartbeat extension . RFC 6520, Internet Engineering Task Force (IETF), February 2012. https:
//datatracker.ietf.org/doc/ rfc6520/ (Page B1-2)

[44] M. Załewski. American fuzzy lop. https:// lcamtuf.coredump.cx/a�/ . Retrieved 2022-02-01. (Page B1-1)

[45] A. Zeller. Yesterday, my program worked. Today, it does not. Why? In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
ESEC/FSE-7, pages 253—-267, Berlin, Heidelberg, 1999. Springer-Verlag. (Page B1-6)

[46] A. Zeller. The Debugging Book . CISPA Helmholtz Center for Information Security, 2021. https://www.
debuggingbook.org/ (Page B1-5)

[47] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler. The Fuzzing Book . CISPA Helmholtz Center for
Information Security, 2019. https://www.fuzzingbook.org/ (Pages B1-5 and B1-13)

[48] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler. Testing graphical user interfaces . [47]. https:
//www.fuzzingbook.org/html/GUIFuzzer.html (Page B1-3)

[49] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input . IEEE Transactions on Software
Engineering (TSE), 28(2):183–200, February 2002. https://doi.org/10.1109/32.988498 (Page B1-6)

[50] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining version histories to guide software changes .
In ACM/IEEE International Conference on Software Engineering (ICSE), pages 563–572, USA, 2004. IEEE. https:
//doi.org/10.1109/TSE.2005.72 (Page B1-6)

B1-13

https://doi.org/10.1145/1083142.1083147
https://doi.org/10.1145/1083142.1083147
https://doi.org/10.1109/TSE.2020.3013716
https://doi.org/10.1109/TSE.2020.3013716
https://doi.org/10.1109/TSE.2020.3013716
https://publications.cispa.saarland/3596/
https://publications.cispa.saarland/3596/
https://datatracker.ietf.org/doc/rfc6520/
https://datatracker.ietf.org/doc/rfc6520/
https://datatracker.ietf.org/doc/rfc6520/
https://datatracker.ietf.org/doc/rfc6520/
https://lcamtuf.coredump.cx/afl/
https://www.debuggingbook.org/
https://www.debuggingbook.org/
https://www.debuggingbook.org/
https://www.fuzzingbook.org/
https://www.fuzzingbook.org/
https://www.fuzzingbook.org/html/GUIFuzzer.html
https://www.fuzzingbook.org/html/GUIFuzzer.html
https://www.fuzzingbook.org/html/GUIFuzzer.html
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/TSE.2005.72
https://doi.org/10.1109/TSE.2005.72
https://doi.org/10.1109/TSE.2005.72

Zeller Part B2 S3

F �estions and Answers

How does S3 address important challenges? The central problem of test generation, debugging, monitoring
is the lack of oracles—predicates that check whether some functionality is correct or not. S3 solves the
oracle problem by: (1) generating inputs at the system level, where invalid and nonsensical inputs
would be rejected; hence, we only learn from valid inputs; (2) decomposing system outputs to learn
postconditions and invariants; and (3) systematically exploring input and output space to prevent
over�tting to a small set of given inputs. For details, see Section A.2 and Section D.1.3.

How does S3 go beyond the state of the art? Automatic test generation and fuzzing so far only check for
generic issues such as crashes. With oracles extracted from system output, generated tests can �nally
check whether behavior is common and correct. With such tests, automated debugging, repair, and
monitoring become way more accurate in their warnings, diagnoses, and �xes, because an in�nite
number of tests is available for guidance and validation. See also Section A.2.

Why not generate tests at the unit level? Generating function calls is easy, as arguments and types are all
explicit. But types do not always capture the full semantics of arguments. For int sqrt(int x), a
test generator may invoke sqrt(-1), and if this fails, produce a (false) failure report. At the system
level, this problem does not arise, as programs are expected to reject invalid inputs (Section D.1.1).

Aren’t there already dynamic invariant learners at the unit level? Yes, but these can only learn from given
runs, as generated function arguments again may be nonsensical (“garbage in, garbage out”; Sec-
tion D.1.3). Checks at the unit level come too late to block inputs and prevent damage; and if they fail,
they refer to internal conditions that are di�cult to characterize and debug.

How do you know the behaviors you learn from are correct? We assume that most of them are correct,
allowing our bots to �ag abnormal behavior. The abstraction in system invariants allows us to
di�erentiate high-level equivalence classes of output (and thus behavior) di�erences, such that humans
can easily assess outliers for correctness (Figure B2-5; see also WP3 and WP4).

How do you know your test cover all behaviors? Testing is incomplete by construction. If we know the
syntactic and semantic properties of the input, though, we can make testing way more e�ective,
especially as we infer which properties trigger which functionality (WP5).

My server is a complete black box. How could you infer its input structure? We can learn the input gram-
mar from an open source alternative, or an output grammar from a client.

How do you handle encrypted and encoded data? We assume multiple layers connected via constraints
that describe encryption and encoding (WP1–WP2).

How do you handle passwords? Do you infer them? This is why system invariants must be readable and
maintainable by developers, so they can specify the information that bots need.

Why not infer hformalismi instead of grammars and constraints? Developers are well familiar with both
grammars and conditions. Regular expressions and state machines cannot fully capture the complexity
of �le formats and interactions. Universal grammars would require encoding basic primitives such as
arithmetic as grammars, which is impractical. Programs can either parse or produce, but not both.

How would S3 capture the entire behavior of hsystemi in a few constraints? We do not aim for learning (or
even specifying) all behavior. A small set of critical invariants, even partial or approximate, already
can bring huge bene�ts for testing, debugging, and monitoring (Section A.4).

How does S3 scale to large distributed parallel systems? One service at a time. In a network of components,
we can tie output grammars of clients to the input grammars of servers and vice versa, o�ering even
more opportunities for testing and inference.

How about vulnerabilities that do not show up in the output? Such vulnerabilities would manifest them-
selves via resource accesses. If a system has, say, a backdoor that opens an unrestricted shell, a monitor
bot would note that it starts a shell not running any of the previously observed scripts.

How about complex user interfaces such as the metaverse? We would not apply S3 at the pixel level, but
some layer below, where interaction takes place as operations on individual objects.

Isn’t S3 just a continuation of your earlier work? Not at all. My team and I build on our expertise in infer-
ring input structure, as well as our contributions in testing and debugging. But creating universal
ways to decode and assess outputs, solving the oracle problem, and generally going for the largest of
scale and automation is far beyond what we—or anyone else—has ever done before.

B2-14

