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Summary

I"# $% we had software bots that tirelessly test, debug, and monitor our software sys-
tems? IT workers are expensive and scarce. So why canOt we further automate boring, repetitive
activities such as testing and debugging? The problem is that we lack computer-reasiadt@cations
(so-calledoracle for what the system should do or not do. For decades, thiscle problerhas been a
roadblock to automated test generation, trusted software repairs, and accurate monitoring of softyare.
Building on groundbreaking research to infer input languages of systessmtroduces a uniled
approach tdearning oracles automaticallit takes a given software systermfersanddecodeis inputs
and outputs; and rungxperimentso extractmodelf how the system behaves, capturing its semantics
by predicting output features for given input features.
These models, nameslystem invariantsallow to fully automatecritical software development
activities:

Testing. System invariants encodanguagedor automatically generating test inputs and provide
oracledor checking test results: Oln thiesserver, thel payload in the 'heartbeat-resporismust
be the same as in thkheartbeat-requesO

Debugging. System invariants allow narrowing down causes of software behavior (OThe X.509 public
key certilcate is not recognized if subject-namfecontains a zero byteO). Generated tests and
oracles ensure reliable automated repair.

Monitoring. System invariants enable detecting abnormal behavior at runtime IHj , logging a
luser-agernitcontaining"${jndi: !url"}" opens!url"O). Problematic queries can be isolated and
investigated until the problem is !xed.

%

In the future, testing, debugging, and monitoring would thus be taken ovesbjtware bots/ho would
autonomously explore software behavior, report issues, and suggest actions to their human co-workers,
boosting developer productivity and software reliability.
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A Extended Synopsis of the Scientific Proposal

A.1 Objectives

With modern software development practices, humans can assemble feature-rich software systems from
powerful components. But the larger these systems become, the harder it is to test themNand when they
fail, developers are faced with millions of code lines that all could contribute to the failure.

The aim ofssis to fully automate testing, de-

bugging, and monitoring of complex software q
systems. The idea is to havesoftware botshat
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(FigureB1-1). Such software bots woulsubstan- B0t 13 o
tially reduce the cost of developing software

and considerably improve its reliability,  while
humans would focus on thereativeparts of developing software.

Figure B1-1: Software development and IT operations with software bots

A.2 Challenges and State of the Art

Today, wedohave software bots to run tests and monitor software. But these botsdaraidNfor each bot
and each new software, lumanmust specify what to test and what to observe. In order to autonomously
create tests and debug and monitor some new software, bots !rst have to be aliéet@ctwith itNthat is,
produceinputs examineoutputs relate these to the inputs, and thus explore and check its functionality.
Such an autonomy, however, faces long-standing challenges:

First, there is thenput generation problem: How can a bot create inputs that reliably cover functionality?
Random system input generators (Ofuzze#s{) ¢asily detect issues and vulnerabilities in input processing
of arbitrary programs. However, creatingalid inputs and interactions that reliably reach code beyond
input processing is still a challenge, for which test generators still reqiitenan assistandieither through
input specilcations P, 8, 14, 19, 2, 34 or a comprehensive population of diverse input samples that cover
behavior R9, 44, 26 6]. Without such assistance, a software bot is lost.

The biggest challenge, however, is the long-standiegt oracle problem : How can a bot check the
outputs of a system&Il test generators and fuzzers assume soonaclethat checks for correctnessNby
default, agenericoracle that detects illegal or unresponsive states. If, however, a bot is tospeti!c
checks, it needs test oracléhat retrieves and evaluates the relevant information from the output. Creating
oracles manually 38 9, 25 7, 39 is nontrivial and time-consuming: OCompared to many aspects of test
automation, the problem of automating the test oracle has received signi!cantly less attention, and remains
comparatively less well-solved d).[

Specilcation miningand program synthesigchniquesmine oracle candidates from a program.§ 1, 42,

17, 3] that match a set of given executions. Despite the progress made by these techniques, their fundamental
problem is that they riskoverl!tting to the given executions. If agrt(x) function, for instance, is only
called withx < 10Q then a speci!cation miner likebAIKON [ 13 would infer that x < 100is a precondition

of sgrt(x) (andsqrt(x) < 10a postcondition). Using a generator to tesgrt(x) with more arguments
would be no help, as it might invoke the function with generated arguments that violate the implicit
precondition (say, withx = #1), and thus obtain executions with arbitrary results (Ogarbage in, garbage
outO). We thus havechicken-and-eggroblem here: To mine a specilcation from generated inputs, we
need the test generator to respect the very preconditions we want to mine. As with test generation, mining
oracles thus needs a comprehensive population of diverse input samples that cover behavior.

The oracle problem not only a"ects the !nal result of a computation. If the bot isiteractwith the
software and produce new inputs in reaction to output properties, we have the oracle problesveat step
of the interaction. This is why so much time goes into manual testing and debuggingNand still, software
catastrophes likdeartbleed 1 or log4shellthe Olargest vulnerability ever@i], keep on haunting us.

B1-1



Zeller Part B1 S3

A.3 Approach: Learning and Leveraging System Invariants

In recent work, my team and | have pioneered groundbreaking techniques to automatically infanjue
languageof a systemNthat ig1)input syntax,learning concise and well-structuregrammarsfrom how the

system decomposes and processes its inpR6s16, generating input samples as needet]; and (2)input
semanticasconstraintgletailing how grammar elements relate to each othéf]. From such grammars and
constraints, a testing bot can produce myriads of valid inputs, addressingripet generation problem.

These inputs are all produced at tlsgystemevel, where it is the duty of the program under test to reject

any invalid input. Hence, we avoid the Ogarbage in, garbage outO problem and have only valid executions to
learn from, including input syntax and semantics.

We had an eureka moment when we realized that we can create similar techniques tinédssyntax
and semantics of system outpuistably output grammargrom how the system composes outputs; and
againconstraintover grammar elements. A testing bot can thdecomposandcheck system outputsyen
in relation to earlier (given or generated) inputsNthat is, it addressesttst oracle problem.

This leads us to the central novel conceptsd System invariantexpress the semantics of software
systems as interleavings of grammars and constraints that characterize inputs, outputs, and their relations.
This includeslle and network databytes and charactersdystem andvplinteractiongcalls and results); and
evengraphical user interface interactioaving oncdearnedthe invariants of a system, autonomous bots
canleveragehem to test, monitor, and debug the systemNwithout ever getting tired.

A.3.1 Learning Input Languages

Let us introduce the concept of system invariants with an example from the networking domain. The
Heartbeatxtension i3 of a TLsserver allows clients to check whether a server is still active, by sending a
0x1 byte followed by gayloadwhich the server is expected to include verbatim in its response.

The syn_tax (_)f such reql_Jests_is easy t(_) spe_cify. Thgeartbeat_requ ast= Oxll
grammarin Figure B1-2identiles the individual
elements in the request; we can use itp@rsegiven |, i0aq = 1 | 1byte' ! payload
requests (and thus access and check its constituent§)yging ::= 1 | 1byte'1padding
but also toproduceequests (and thus test the server).

Using a grammar as a producer ensuagtactic

validity. This makes test generation far more e#cient than generating and mutating random bytes, as valid
inputs reliably exercise functionality beyond input processing. (To test input processing and handling of
invalid inputs, we can still mutate valid inputs.)

In recent work [16 20, my team and | have shown how to automatically extranput grammargrom
existing programs. OuMIMID prototype takes a program and a set of diverse sample inputs (which we can
even generate from scratcl2f]) and tracks where and how individual bytes in the input are processed.
Bytes that follow the same path form tokens; subroutines induce hierarchies. After relning grammars
through active learningMIMID thus produces a context-free grammar that accurately represents the input
language of a program. ARIMID grammars reuse code identilers and re$ect code structure, no other
technique produces grammars that are even nearly as concise, structured, and well-readable.

So far,MIMID and similar techniques have assumed mogtyt-basegarsers with one input source.
However, its principles are also applicable to binary inputs and multiptestreams. Hence, witls3 the
grammar in FigureB1-2could actually be extracted from a given.sserver and a set of traces, allowing for
massive testing of the Heartbeat extension.

payload_length ! payload' !paddingd'
Ipayload_length::= !uint16"

Figure B1-2: An input grammar for theTLSHeartbeat Extension

A.3.2 Learning Interactions

To reallytesta system, we also must check sitput.In our Heartbeatexample, the server responds with a
0x2 byte, followed by the payload in the request and some padding. To specify the response, we could again
use a grammar. However, we also want to express that the response iethdtof the request. For this, we
interleaverequest and response into a single grammar[23 characterizing the interaction (FigurB1-3.

With such ani/o grammar, we carparsean entire client/server interaction teheckwhether a 0x1 client
request gets a proper 0x2 server response. However, we carpatstuceanputs for the server, expanding
Iheartbeat_requéstand thenparseand check the server response. Alternatively, we caacka server by
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parsingits input and thenproducingts output, expandind heartbeat resporisdy interleaving multiple
input and output sources in a single representation, we obtain a declarative specilcation of interactions
that embeds all the expressiveness of !nite-state protocol specilcations, yet is detailed enough to produce
valid inputs and check concrete outputs alike. Besides bytes and characters exchaoggdmmars can
also encode !le and systemn, resource accesses, and eval interactions E9.

Our techniques for Ieaming inpUt grammars CaNexchange::= !heartbeat_request heartbeat_resporise
be equally applied fotearning output grammars,iheartbeat_request:= 0x1!payload_length!payload !padding
by tracking output bytes back to the methods thatheartbeat_resporise= 0x2!payload_length !payload' !padding'
produced them. As thastechniques easily produce!payload_length::= !uint16'
a wide diversity of inputs, we have a wide varietypayload ::= ! | byte"!payload
of interactions to learn from. Ipadding' ::= ! | !byte" ! padding'

Figure B1-3: TLS Heartbeati/o grammar. After a client sends a
'heartbeat_requestthe serverresponds with!heartbeat_resporise

A.3.3 Learning Constraints

Our grammar in FigureB1-3still is not su#cient for testing, as we miss essential propertiesNfor instance,
that the payload in request and response should be identical. Such equalities cannot be expressed in a
context-free grammar. However, we can represent these as additiooradtraintghat express the relationship
between elements in the exchange. Such constraints are similar to function pre-/postconditions, except
that the role of function variables is taken by grammaonterminals They can thus make use of arbitrary
formalisms, expressing e.g. arithmetic, strings, sets, or temporal logic.

FigureB1-4lists such constraints for the grammar e "
in FigureB1-3 We see thatpayload_lengthis the ' 'Pavioad =uintl6 ipayload length $ 16357
length of the!payload element (for both request and'"ea"Peal_resporisépayload = theartbeat_request payload

. Figure B1-4: Constraints for the grammar in FigurB1-3 The payload
response), and that the payload in request and ri&3heartbeat_requesand theartbeat_resporismust be identical.
sponse must be identical.

| call the combination of awo grammar(FigureB1-3 andi/o constraintgFigureB1-4 asystem invariant,
as it speciles the possible interactions of systems as well as their pre- and postconditions. By separating
the formalisms for grammars and constraints, we can make use of e#cient grammar-based parsers and
producers, 0%oading only the semantic aspects to checkers and solvers. The alternative, universally using
string constraints for lexical, syntacticahnd semantic properties, would quickly overload a solver like[5,

OThe solver isnOt particularly good at handling all cases around theseOQ].

Manually speciled invariants can easily check concrete interactionsHéartbleedattack, in which
Ipayload_lengthwould be manipulated such thdteartbeat_resporisigpayload would include private
server memory contents, would be immediately detected by violating the given constraints.

Such manual specilcation is tiresome, though. Hence, a key idea of this proposakisttact constraints
automaticallyfrom given traces and implementations. Notabprogram synthesis techniquasuld system-
atically Ind predicates (constraints) that match the observed values of variables (nonterminals). But while
program synthesis may over!t to a small set of observed values, we can use the input grammar to generate
as many valid and diverse inputs as we see !t, and hence can have a myriad of interactions to learn from.

Delning such constraints is feasible. OusLa input speci!cation languag!]] allows expressing and
checking constraints like the ones in FiguBil-4 I1SLa also serves as@oducensing thezs constraint solver
to produce semantically valid inputs. To the best of our knowledgea is the !rst and only declarative
language that can capture the full semantics of complex inputs for parsing and producing.

We can everlearnconstraints from given inputs, OuisLearn prototype instantiates patterns from a
catalog to obtain invariant candidate4 §; to mine such constraints at the system level is also a !rst. Our
learner can thus easily detect that in abservedhputs, ! payload_lengthis indeed the length of the payload
(FigureB1-4. While validating this invariant candidate, however, the learner would test the server with
counterexamplewiolating the payload length assumption, and thus immediately trigger theartbleed
vulnerability (FigureB1-5.

But how would a bot distinguish correct from incorrect behavior? Our learners partition behavior
into syntactic and semantiequivalence classérHeartbeatthese classes would bét)a request where
the payload returned is identical; an@) one where it is not (i.e.Heartbleefl With one invariant and
example for each, these two classes would be easy for humans to check; such di"erentiation would also
allow focusing on the most relevant invariants. éfrlier runs or versiorexist, though, our bots can focus
on new and unseen behavidrd, comparing behavior against invariants learned fragmistingruns and/or
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previous program versions. Output di"erences can be measurezyatacticand semantidevels, avoiding
spurious alarms due to minor di"erences such as time stamps or session keys.

As a_resul_t, bots can produce concise and actiqnaQL%artbeat_requ ast= Ox1 Ox3" "hello” 0D ...
reports in which grammar elemepm;bs”ac‘andgenerahze heartbeat_resporise= 0x2 0x3"f "hello\Osecret1\Osecret2\0"
problem circumstanceslp, 24: OlIf thel payload_length
leld in the client request!heartbeat_requésexceeds the
request length, then in the servéheartbeat_resporis¢he ! payload is di"erent (FigureB1-3, in contrast
to all past runs. Are you aware of this?0

Figure B1-5: A concrete interchange leaking secrets

A.4 Risks and Gains

Let me be clear: What | have sketched above is a Ohappy path,O which assumes that lots of postulated
techniques would work as intended. Real-world system invariants will be far, far more complex than the
HeartbeaextensionNthe fullTLs 1.3 specilcation 7], for instance, encompasses 160 pages. Even though we
will be able to infer most or even all of a systemf@ssyntax,there is no way thatsawould be able to obtain

such full and precise semantics of systems fully automatically. That is because all synthesis and learning
techniques break down complex behavior into simple functionsNand thus may produce approximations even
if given an in'nite supply of executions to learn from. However, evapproximateand partial invariants
already su#ce to:(1) obtain high-level, declarative specilcations of system behavior, to be read, re!ned,
and extended by humang$2) have oracles that precisely check for these invariari;generate myriads of

valid test inputs;(4) use executions from these test inputs to further relne invariants and orac(g¥have
precise debugging and repair as our generated tests avoid overltt{fycan discover anomalies, subtle
bugs, and vulnerabilities in critical infrastructures; arfd)thus still reach our objectiveNsoftware bots that
autonomously test, debug, and monitor given software.

A.5 Organization

The s3project comes in sixvork packagesvpPibwpP3cover WP1 on  WP2 WP3
obtainingsystem invariants, notably foundationsvP1), min-  (Foundations) © (Mining) & (Synthesizing)
ing input languages\yP2), and synthesizing invariants\(P3.
wWP4BWP6 apply system invariants in testingwp4), debug-
ging (wps), and monitoring (P6). Wp4 WPS o wp6
Six Ph.D. studentsach working on avefor 3.5 years, will ~ (Testing) —  (Debugging) = (Monitoring)
be funded by the present proposalwo postdoosho will Figure B1-6: s3work packages
combine their own independent research agenda wstitechniques (one fowPBWP3 one forwP4wPe)
and | (devoting 50% of working time t83 will be funded through my resources aisPA
FigureB1-6shows the information $ow between packages. While work packages are desigrasehielt
from each other and create synergies, each package can also be realized independently.

' system invariants

WP1: Foundations of System Invariants. In WP1, my team and | de!nesyntax and semantiasf system
invariants, notably for stateful and reactive systems, building on our experience in specifying complex
input languages41]. This includes research tql) specifyvocabulariesind librariesfor common
system invariants;(2) track access t@ystem resourcasotably reading and writing to multiple
channels;(3) track nonfunctionalproperties such as resource usage, $ows, or dependen2igs [
timing, frequency, or thread schedules; a(#)tie multiple layers of encoding and encryption. We
will run case studiesreating invariants for protocols such & pP[36, SMTP[35, or TLS[37].

WP2: Mining Input Languages. In WP2, we mineinput language$rom existing systems to express their set
of valid inputs; these fornsystem preconditiond/e build on our experience in mining input grammars
[16 20 and track input elements throughout program executions to infer input structure as well as
semantic constraints. Challenges includé) systematicallyre!ning input languages by checking
whether inputs generated from them are accepted by the system under(@xletectingprocessing
layers(say, scanningkML tokens, parsingKML syntax, processing arML tree); and(3) detecting
constraintsuch as length !elds or checksums.

WP3: Synthesizing System Invariants. In WP3 we mine the syntax and semantics sfstem outputsex-
pressed as grammars and relationships between input and output elements, e"ectively acting as
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systempostconditionsChis includes:(1)learningoutput grammargrom given systems(2) synthe-
sizingsemantic properties using pattern catalogs and program synthesis technig8gdeveloping
di"erentiation techniquet determine the properties most relevant for some outcome; édide!ning
properties through generated test cases.

WP4: Testing with System Invariants. WP4makes use of the system invariants speciledwp1(or mined
in wp2andwp3) to thoroughly testexisting systems. This builds on our experience in systematically
generating highly complex inputs41, 18 11]. We will research means tq1)use system invariants as
oracles(2)use invariants asnock objectduring testing;(3) achieve systematicoveragever input
and output elements, constraint conditions, and their combinations; &fjdievelop a methodology
for invariant-driven development!ning hand-speciled invariants into implementations. As a result,
we obtain fully automated testing techniques that e"ectively and e#ciently explore program behavior
and $ag unexpected outcomes.

WP5: Debugging with System Invariants. In WP5 my team and | generatdiagnoseandrepairsfor failures.
Based on our experience in leveraging input grammars to determine failure circumstafnée?/],
my team and | will research how to derive invariants that characterize failing runs (in contrast to
passing runs). Such invariants not ongxplainfailure conditions, but als@roducédurther test inputs
that trigger the failure; generated tests and oracles then guide and validatemated software repair.

WP6: Monitoring with System Invariants. In WPg we want to raise anomaly detection to a higher level.
We Irst learnsystem invariants from (generated) tests and/or in production. Again, the resulting
invariants would express high-level syntactic and semamticproperties, but alssesource accesses
dependent on earlier inputsNallowing a far higher expressiveness and abstraction level than the
generic checks in common intrusion detection systems. Our bots can then continuously and e#ciently
checksystem invariants; in case of a violation, they would diagnose the precise circumstances of
an attack and isolate matching inputs. Untrusted systems and components could be constrained to
extracted and assessed invariants, preventing latent malicious beha¥ihr |

To implement and evaluate our techniques, my team and | will Irst build prototypes in andferHON
programs. Our experience with our interactive textbooks on test generatioh dnd debugging 46 has
shown us that inPYTHON novel techniques for dynamic instrumentation and analysis can be implemented
orders of magnitude faster than with traditional compiled languages such as @wx

Having thus re!ned our algorithms and techniques, we wiifistantiatethem for C programs and integrate
them into bots for testing, debugging, and monitoring real-world servers and interactive systems. Our
evaluation will focus on traditionabccuracymeasures. Fonp4, the question will be how well mined system
invariants approximate input and output languages; fors how well they capture failure conditions; and
for wpe how well they identify attacks and abnormal behavior. The goal is to have a high recall (= missing
few bugs / failure conditions / attacks) and a high precision (= reporting few false alarms).

The s3techniques will become available g4 open source textbodkst demonstrate all concepts with
interactive, well-documented code and examples, allowing for easy replication and extensiof2)gomen
source software bdtyr autonomous testing, debugging, and monitoring of real-world software.

A.6 Impact

s3will not only produce autonomous software bots for testing, debugging, and monitoring, but also detect
(and !x) signi'cant bugs in day-to-day systems. Catching just one vulnerability before it goes into production
might be worth more than the entire cost of this research.

But s3also unlocks synergies with other research lelds, as its system invariants provide &acto
inlnite supply of tests, with hundreds of input, output, and execution features available for analysis and
learning. Mining function speci!cationgL3 can !nally become precise, providing pre- and postconditions
to boost symbolic reasoning and verilcation; these invariants could even refer to input and con!guration
properties. Network and security protocols would be supplied witiimal speci!cation$or inspection and
verilcation [ 3(. Inferring system invariants fronopaque systenssich as trained machine learning models
would reverse enginedrem [33, explaining and predicting their behavior based on myriads of experiments.

Developers today spend 50% of their time on testing and debugging, and still cannot eradicate all software
bugs and vulnerabilities. The gains in productivity and reliability Bgsoftware bots could be considerableN
up to even being measurable in the gross national product of Europe and the world.
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2008bpresent Steering Committee, Int. Symposium on Software Testing and Analysis (ISSTA)
2011D2020 National DFG Proposal Review Panel for Computer Science, Elected Member
2013b2017 Editorial Board, IEEE Transactions on Software Engineering (TSE)

2009D2017 Editorial Board, Springer Journal on Empirical Software Engineering (ESEM)
20112016 Steering Committee, European Software Engineering Conference (ESEC)
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Appendix: All ongoing grants and submi Led grant applications of the PI (Funding ID)

Ongoing Grants

Project Title Funding Amount  Period Role of Relation to s3Proposal
Source the PI

EMPEROR: Learning CausesDFGgrant 220,00@ 2021D2024 Co-PI no overlap; explores using ML

of Program Behavior classilers forALHAZEN [24]

CPSec: E"ective Testing of BMBFgrant 3,200,000 2022D2024 Co#®l no overlap; explores di"eren-

Cyber-Physical Systems tial fuzzing

Grant Applications

(none)

Iproject with Co-PI Lars Grunske, Berlin, totaling one Ph.D. student for three years under supervision of the PI
2Project with Co-PI Thorsten Holz (CISPA), Robert Bosch GmbH, and letOs dev GmbH & Co. KG, NXP Semiconductors Germany
GmbH, totaling two Ph.D. students for three years under supervision of the PI
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C Ten-Year Track Record: Andreas Zeller

C.1 Ten Representative Publications

1.

10.

G. Fraser and\. Zeller . Mutation-driven generation of unit tests and oracles IEEE Transactions on
Software Engineering (TSE)11, 38(2), pp. 278292 and ISSTA 28p8://doi.org/10.1109/ TSE.2011.93
I This paper introduced test oracle inference at the unit level, using mutation analysis

. V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack,andeller . Automatically Generating Test

Cases for Specilcation Mining. IEEE Transactions on Software Engineering,(Z&E), 38(2), pp.
243D257ttp://dx.doi.org/10.1109/ TSE.2011.105
I This paper pioneered the use of generating test cases for mining (state machine) specilcations.

. C. Holler, K. Herzig, and\. Zeller . Fuzzing with Code Fragments. In USENIX Security Symposium

2012, pp. 38Db4Bttps://www.usenix.org/ conference/ usenixsecurity12/technical-sessions/ presentation/
holler
I The LANGFUZzztool introduced grammar-based test generation to the security community.

. A. Gorla, |. Tavecchia, F. Gross, afidZeller . Checking App Behavior against App Descriptio@s

In ACM/IEEE International Conference on Software Engineering, @OSE)pp. 1025D1038tp:
//dx.doi.org/10.1145/2568225.2568276

I CHABADA introduced checking program behavior (notably thel usage of apps) against natural
language descriptions (app descriptions).

. K. Jamrozik, P. von Styp-Rekowsky, aAdZeller . Mining Sandboxeg. In ACM/IEEE International

Conference on Software Engineering (|GZBEP, pp. 37D4Bttp://dx.doi.org/10.1145/2884781.2884782
I' This paper introduced the idea of mining behavior constraints to later enforce them.

. B. Mathis, R. Gopinath, M. Mera, A. Kampmann, M. HSschele, Andeller . Parser-Directed

Fuzzing®. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI)
2019, pp. 548b56ftps://doi.org/10.1145/3314221.3314651

I This paper showed how to leverage dynamic analysis to systematically explore all branches of a
parser and hence obtain a set of samples for grammar mining.

. R. Gopinath, M. Mathis, and. Zeller . Mining Input Grammars from Dynamic Control Flo. In

Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESECA02BENttps://doi.org/10.1145/3368089.3409679

I TheMIMID tool is our latest input grammar miner, automatically extracting a concise, well-structured,

and well-readable grammar from a program and a set of inputs.

. R. Gopinath, A. Kampmann, N. Havrikov, E. Soremekun, Andeller . Abstracting Failure-Inducing

Inputs@. In ACM SIGSOFT International Symposium on Software Testing and Analysis d&ZJXA)
https://doi.org/10.1145/3395363.3397349

I' This paper shows how to leverage grammars to abstract failure-inducing inputs into general patterns
that explain failures and produce further failing test inputs.

. A. Kampmann, N. Havrikov, E. Soremekun, afddZeller . When does my Program do this? Learning

Circumstances of Software Behavi@r In Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (EGHEL/FSE)
https://doi.org/10.1145/3368089.3409687

I The ALHAZEN tool systematically explores program behavior, re!ning and validating hypothesis to
determine failure circumstances.

E. Soremekun, E. Pavese, N. Havrikov, L. Grunske Aarikller . Olnputs from Hell: Learning Input
Distributions for Grammar-Based Test Generatia#.{h IEEE Transactions on Software Engineering
(TSE)2020https://doi.org/10.1109/ TSE.2020.3013716

I' This paper showed how to learn distributions of input elements to direct test generation towards
common and uncommon inputs.
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C.2 Patents

¥ A. Zeller and K. Jamrozik. 2016. OMining SandboxesO, European \R&e016/131830 Ad.

¥ N. Nagappan, T. Zimmermann, B. Murphy, aAdZeller . 2016. OPredicting Defects in CodeO, US
Patent 9378015.

C.3 Keynotes at International Conferences, Summer Schools

FUZZING (2022)%OCyber in NancyO Summer School, Nancy, France @83E)20214ISSTA (20201
MOBILEsoft (2020RICSE (2018RV (20178MSR (2017RICST (2017)Halmstad Summer School on
Software Testing, Halmstad, Sweden (204IQPC (20154AICSE (2014)AICMT (2013)ASPIN (2012)

C.4 Organization of International Conferences

¥ ACM SIGSOFT/IEEE TCSE International Conference on Software Engineering (ICSE) N
Program Co-Chaif2022aProgram Board Member (2018, 20&B)pctoral Symposium Chair (2012)
aPC Member (2023, 2021, 2020, 2017, 2015, 2014a2t3)ng Committee Member (2018D)

¥ ACM SIGSAC Computer and Communications Security (CCS) N PC Member (2021, 2022)

¥ ACM SIGPLAN Programming Language Design and Implementation (PLDI) N PC Member
(2017, 2021)

¥ |[EEE International Conference on Software Testing and Veri#cation (ICST) N Program Co-
Chair (2020)Steering Committee Member (2020D)

¥ European Symposium on Security and Privacy (EuroS&P) N General Chaif2016)

¥ ACM International Conference on Software Testing and Analysis (ISSTA) N General Chair
(2016)aSteering Committee Chdz016D201APC Member (2022, 2020, 2018, 2013)

¥ IEEE/ACM Conference on Automated Software Engineering (ASE) N Program Co-Chaif2013)
aPC Member (2017, 2014)

¥ ACM SIGSOFT Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE) N Doctoral Symposium Chair (2013PC
Member (2019, 2017, 2015, 2@Repering Committee Member (2009D2016)

¥ Dagstuhl Seminars N Co-OrganizefOSoftware Bug Detection: Challenges and SynergiesGa 2023
OTesting and Verilcation of CompilersO, 2aDArtifact Evaluation for PublicationsO, 2015)

C.5 Major Contributions to the Early Careers of Excellent Researchers

Thomas Zimmermann @ (Senior Principal Researcher at Microsoft Research; Associate Professor at Univer-
sity of Calgary) did his Master thesis (2001) and Ph.D. thesis (2006) with me, shaping and pioneering
the new research !eld of Mining Software Repositories. As ACM Fellow and elected president of
ACM SIGSOFT, Thomas is now one of todayOs most in$uential Software Engineering researchers.

Gordon Fraser @ &Marcel B6hme @ 4Alessandra Gorla @ §Juan Pablo Galeo [i® 4Rahul Gopinath @ are
former Post-Docs now occupying excellent positionSirdon Fraser is full professor at Passau
University; Marcel BShme is junior faculty at the Max Planck Institute for Security and Privacy in
Bochum;Alessandra Gorla is assistant researcher professor at the IMDEA Software Institute in
Madrid; Juan Pablo Galeaotti is professor at the University of Buenos Aires; aRéhul Gopinath is
assistant professor in Sydney.

C.6 Examples of Leadership in Industrial Innovation or Design

Testfabrik AG @, founded in 2011, generates and runs tests for Web applications and mobile apps. After
attracting more than 1 milliore in startup funding and awards as co-founder, Testfabrik currently
has 20+ full-time employees; | serve as chair of the supervisory board.
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F lestions and Answers

How does s3address important challenges? The central problem of test generation, debugging, monitoring
is the lack oforacleBlpredicates that check whether some functionality is correct or nggsolves the
oracle problerby: (1) generating inputs at the system level, where invalid and nonsensical inputs
would be rejected; hence, we only learn from valid input®) decomposing system outputs to learn
postconditions and invariants; an(8) systematically exploring input and output space to prevent
overltting to a small set of given inputs. For details, see Sectif and SectiorD.1.3

How does s3go beyond the state of the art? Automatic test generation and fuzzing so far only check for
generic issues such as crashes. With oracles extracted from system output, generated tests can !nally
check whether behavior is common and correct. With such tests, automated debugging, repair, and
monitoring become way more accurate in their warnings, diagnoses, and !xes, because an inlnite
number of tests is available for guidance and validation. See also Se&tibn

Why not generate tests at the unit level?  Generating function calls is easy, as arguments and types are all
explicit. But types do not always capture the full semantics of arguments.ifosqgrt(int x) ,a
test generator may invoksqrt(-1) , and if this fails, produce a (false) failure report. At the system
level, this problem does not arise, as programs are expected to reject invalid inputs (SBctidn

ArenOt there already dynamic invariant learners at the unit level? ~ Yes, but these can only learn frogiven
runs, as generated function arguments again may be nonsensical (Ogarbage in, garbage outO; Sec-
tion D.1.3. Checks at the unit level come too late to block inputs and prevent damage; and if they fail,
they refer to internal conditions that are di“cult to characterize and debug.

How do you know the behaviors you learn from are correct?  We assume thatnost of themare correct,
allowing our bots to #agabnormalbehavior. The abstraction in system invariants allows us to
diSerentiate high-levekquivalence classefsoutput (and thus behavior) di$erences, such that humans
can easily assess outliers for correctness (Figd2e5 see alsavP3andwpP4).

How do you know your test cover all behaviors?  Testing is incomplete by construction. If we know the
syntactic and semantic properties of the input, though, we can make testing way more e$ective,
especially as we infer which properties trigger which functionalitwgs).

My server is a complete black box. How could you infer its input structure? We can learn the input gram-
mar from an open source alternative, or an output grammar from a client.

How do you handle encrypted and encoded data? We assume multiple layers connected via constraints
that describe encryption and encoding/e1BwpP2).

How do you handle passwords? Do you infer them?  This is why system invariants must be readable and
maintainable by developers, so they can specify the information that bots need.

Why not infer !formalisn instead of grammars and constraints? Developers are well familiar with both
grammars and conditionRegular expressioaad state machinesannot fully capture the complexity
of lle formats and interactionsUniversal grammargiould require encoding basic primitives such as
arithmetic as grammars, which is impractic&rogramsan eitherparseor producebut not both.

How would s3capture the entire behavior of !systertiin a few constraints? We do not aim for learning (or
even specifyingpll behavior. A small set ofritical invariants, even partial or approximate, already
can bring huge benelts for testing, debugging, and monitoring (Sectod).

How does s3scale to large distributed parallel systems? One service at atime. In a network of components,
we can tie output grammars of clients to the input grammars of servers and vice versa, o$ering even
more opportunities for testing and inference.

How about vulnerabilities that do not show up in the output? Such vulnerabilities would manifest them-
selves viaesource accessés. system has, say, a backdoor that opens an unrestricted shell, a monitor
bot would note that it starts a shell not running any of the previously observed scripts.

How about complex user interfaces such as the metaverse? We would not applys3at the pixel level, but
some layer below, where interaction takes place as operations on individual objects.

IsnOts3just a continuation of your earlier work? ~ Not at all. My team and | build on our expertise in infer-
ring input structure, as well as our contributions in testing and debugging. But creating universal
ways to decode and assess outputs, solving the oracle problem, and generally going for the largest of
scale and automation is far beyond what weNor anyone elseNhas ever done before.
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