Send email Copy Email Address

Learning Program Models from Generated Inputs


Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs. Such models can mock the functionality of existing programs and serve as quick-to-deploy reverse engineering tools. Still, the problem of automatically learning such predictive and reversible models from programs needs to be solved. This work introduces a generic approach for automated and reversible program behavior modeling. It achieves 94% of overall accuracy in the conversion of Markdown-to-HTML and HTML-to-Markdown markups.

Conference / Medium

Doctoral Symposium

Date published


Date last modified

2023-03-16 07:19:11