The currently fastest algorithm for regular expression pattern matching and membership improves the classical O(nm) time algorithm by a factor of about log^{3/2}n. Instead of focussing on general patterns we analyse homogeneous patterns of bounded depth in this work. For them a classification splitting the types in easy (strongly sub-quadratic) and hard (essentially quadratic time under SETH) is known. We take a very fine-grained look at the hard pattern types from this classification and show a dichotomy: few types allow super-poly-logarithmic improvements while the algorithms for the other pattern types can only be improved by a constant number of log-factors, assuming the Formula-SAT Hypothesis.
European Symposium on Algorithms (ESA)
2020-08-26
2024-11-29