Send email Copy Email Address
2022-05

Practical Post-Quantum Signature Schemes from Isomorphism Problems of Trilinear Forms

Summary

In this paper, we propose a practical signature scheme based on the alternating trilinear form equivalence problem. Our scheme is inspired by the Goldreich-Micali-Wigderson's zero-knowledge protocol for graph isomorphism, and can be served as an alternative candidate for the NIST's post-quantum digital signatures. First, we present theoretical evidences to support its security, especially in the post-quantum cryptography context. The evidences are drawn from several research lines, including hidden subgroup problems, multivariate cryptography, cryptography based on group actions, the quantum random oracle model, and recent advances on isomorphism problems for algebraic structures in algorithms and complexity. Second, we demonstrate its potential for practical uses. Based on algorithm studies, we propose concrete parameter choices, and then implement a prototype. One concrete scheme achieves 128 bit security with public key size ~4100 bytes, signature size ~6800$ bytes, and running times (key generation, sign, verify) ~0.8ms on a common laptop computer.

Conference Paper

International Conference on the Theory and Application of Cryptographic Techniques (EUROCRYPT)

Date published

2022-05

Date last modified

2024-12-13