Mobile operating systems, such as Google’s Android, have become a fixed part of our daily lives and are entrusted with a plethora of private information. Congruously, their data protection mechanisms have been improved steadily over the last decade and, in particular, for Android, the research community has explored various enhancements and extensions to the access control model. However, the vast majority of those solutions has been concerned with controlling the access to data, but equally important is the question of how to control the flow of data once released. Ignoring control over the dissemination of data between applications or between components of the same app, opens the door for attacks, such as permission re-delegation or privacy-violating third-party libraries. Controlling information flows is a long-standing problem, and one of the most recent and practical-oriented approaches to information flow control is secure multi-execution. In this paper, we present Ariel, the design and implementation of an IFC architecture for Android based on the secure multi-execution of apps. Ariel demonstrably extends Android’s system with support for executing multiple instances of apps, and it is equipped with a policy lattice derived from the protection levels of Android’s permissions as well as an I/O scheduler to achieve control over data flows between application instances. We demonstrate how secure multi-execution with Ariel can help to mitigate two prominent attacks on Android, permission re-delegations and malicious advertisement libraries.
Selected Areas in Cryptography (SAC)
2019-04-09
2024-08-27