Sparkle is the first threshold signature scheme in the pairing-free discrete logarithm setting (Crites, Komlo, Maller, Crypto 2023) to be proven secure under adaptive corruptions. However, without using the algebraic group model, Sparkle’s proof imposes an undesirable restriction on the adversary. Namely, for a signing threshold t < n, the adversary is restricted to corrupt at most t/2 parties. In addition, Sparkle’s proof relies on a strong one-more assumption. In this work, we propose Twinkle, a new threshold signature scheme in the pairing-free setting which overcomes these limitations. Twinkle is the first pairing-free scheme to have a security proof under up to t adaptive corruptions without relying on the algebraic group model. It is also the first such scheme with a security proof under adaptive corruptions from a well-studied non-interactive assumption, namely, the Decisional Diffie-Hellman (DDH) assumption. We achieve our result in two steps. First, we design a generic scheme based on a linear function that satisfies several abstract properties and prove its adaptive security under a suitable one-more assumption related to this function. In the context of this proof, we also identify a gap in the security roof of Sparkle and develop new techniques to overcome this issue. Second, we give a suitable instantiation of the function for which the corresponding one-more assumption follows from DDH.
International Conference on the Theory and Application of Cryptographic Techniques (EuroCrypt)
2024-04-29
2024-11-19