Send email Copy Email Address
2024-04-29

Lower-Bounds on Public-Key Operations in PIR

Summary

Private information retrieval (PIR) is a fundamental cryptographic primitive that allows a user to fetch a database entry without revealing to the server which database entry it learns. PIR becomes non-trivial if the server communication is less than the database size. We show that building (even) very weak forms of PIR protocols requires that the amount of public-key operations scale linearly in the database size. We then use this bound to examine the related problem of communication efficient oblivious transfer (OT) extension. Oblivious transfer is a crucial building block in secure multi-party computation (MPC). In most MPC protocols, OT invocations are the main bottleneck in terms of computation and communication. OT extension techniques allow one to minimize the number of public-key operations in MPC protocols. One drawback of all existing OT extension protocols is their communication overhead. In particular, the sender’s communication is roughly double what is information-theoretically optimal. We show that OT extension with close to optimal sender communication is impossible, illustrating that the communication overhead is inherent. Our techniques go much further; we can show many lower bounds on communication-efficient MPC. E.g. we prove that to build high-rate string OT with generic groups, the sender needs to do linearly many group operations.

Conference Paper

International Conference on the Theory and Application of Cryptographic Techniques (EuroCrypt)

Date published

2024-04-29

Date last modified

2024-09-12