E-mail senden E-Mail Adresse kopieren



Stuhlsatzenhaus 5
66123 Saarbrücken (Germany)


Best paper award at NDSS 2019


I am a faculty member at CISPA Helmholtz Center for Information Security.

Previously, I was a research group leader at CISPA. From January 2017 to December 2018, I was a postdoc with Michael Backes. Prior to that, I obtained my Ph.D. degree from University of Luxembourg on November 2016 under the supervision of Sjouke Mauw and Jun Pang. I obtained my bachelor (2009) and master (2012) degrees from Shandong University, China.

My research interests lie at the intersection of privacy and machine learning. Topics can be broadly categorized into two themes. First, I develop machine learning algorithms to quantify and mitigate privacy risks stemming from a variety of human-generated data, such as social network data, biomedical data, and location data. Second, I investigate novel attack surfaces against machine learning algorithms and develop privacy-enhancing techniques to mitigate the discovered risks. Besides, I also work on social network analysis and algorithmic fairness.

CV: Letzte vier Stationen

Faculty Member - CISPA Helmholtz Center for Information Security
Research Group Leader - CISPA Helmholtz Center for Information Security
2017 - 2018
Postdoctoral Researcher - Host: Michael Backes - CISPA, Saarland University

Veröffentlichungen von Yang Zhang

Jahr 2023

Konferenz / Medium

USENIX Security Symposium 2023USENIX Security Symposium 2023

Konferenz / Medium

USENIX SecurityUSENIX Security

Jahr 2022

Konferenz / Medium

NeurIPS 2022NeurIPS 2022

Konferenz / Medium

ACMThe 29th ACM Conference on Computer and Communications Security (CCS)

Konferenz / Medium

ACMACM SIGSAC Conference on Computer and Communications Security

Lehre von Yang Zhang

Winter 2021/22

Privacy of Machine Learning

Machine learning has witnessed tremendous progress during the past decade, and data is the key to such success. However, in many cases, machine learning models are trained on sensitive data, e.g., biomedical records, and such data can be leaked from trained machine learning models. In this seminar, we will cover the newest research papers in this direction.

Summer 2020

Advanced Lecture: Privacy Enhancing Technologies

This course will cover the topic of data privacy from four aspects: social network privacy, location privacy, Machine learning privacy, biomedical privacy.

Summer 2020

Seminar: Data-driven Approaches on Understanding Disinformation

In this seminar, we will look into research that focuses on extracting insights from large corpus of data with the goal to understand emerging socio-technical issues on the Web such as the dissemination of disinformation and hateful content. 

Winter 2019/20

Seminar: Data Privacy

Students will learn, summarize, and present state-of-the-art scientific papers in data privacy. Topics include social network privacy, machine learning privacy, and biomedical data privacy.