A recent trend towards running more demanding web applications, such as video games or client-side LLMs, in the browser has led to the adoption of the WebGPU standard that provides a cross-platform API exposing the GPU to websites. This opens up a new attack surface: Untrusted web content is passed through to the GPU stack, which traditionally has been optimized for performance instead of security. Worsening the problem, most of WebGPU cannot be run in the tightly sandboxed process that manages other web content, which eases the attacker's path to compromising the client machine. Contrasting its importance, WebGPU shader processing has received surprisingly little attention from the automated testing community. Part of the reason is that shader translators expect highly structured and statically typed input, which renders typical fuzzing mutations ineffective. Complicating testing further, shader translation consists of a complex multi-step compilation pipeline, each stage presenting unique requirements and challenges. In this paper, we propose DarthShader, the first language fuzzer that combines mutators based on an intermediate representation with those using a more traditional abstract syntax tree. The key idea is that the individual stages of the shader compilation pipeline are susceptible to different classes of faults, requiring entirely different mutation strategies for thorough testing. By fuzzing the full pipeline, we ensure that we maintain a realistic attacker model. In an empirical evaluation, we show that our method outperforms the state-of-the-art fuzzers regarding code coverage. Furthermore, an extensive ablation study validates our key design. DarthShader found a total of 39 software faults in all modern browsers Chrome, Firefox, and Safari that prior work missed. For 15 of them, the Chrome team assigned a CVE, acknowledging the impact of our results.
ACM Conference on Computer and Communications Security (CCS)
2024-12-02
2024-12-19