Send email Copy Email Address

Email

Address

Campus E1 1
66123 Saarbrücken (Germany)

Short Bio

Prof. Bernd Finkbeiner, Ph.D. is a faculty member at the CISPA Helmholtz Center for Information Security and a professor for computer science at Saarland University. He obtained his Ph.D. in 2003 from Stanford University. Since 2003, he leads the Reactive Systems Group, which became part of CISPA in 2020. His research focus is the development of reliable guarantees for the safety and security of computer systems, including specification, program synthesis and repair, and static and dynamic verification. 
 

CV: Last four stations

2020 - now
Faculty member at CISPA
2006 - now
Professor at Saarland University
2003 - 2006
Junior professor at Saarland University
1996 - 2002
Research assistant at Stanford University

Publications by Bernd Finkbeiner

Year 2022

Conference / Medium

ATVA
ATVAATVA 2022

Conference / Medium

RV
Runtime VerificationRuntime Verification 2022

Conference / Medium

PLDI
43rd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI)43rd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI)

Conference / Medium

CAV
34th International Conference on Computer Aided Verification, Proceedings (to appear)34th International Conference on Computer Aided Verification (CAV 22)

Conference / Medium

HSCC
Proceedings of HSCC22,25th ACM International Conference on Hybrid Systems: Computation and Control

Conference / Medium

CAV
Proceedings of 34th International Conference on Computer Aided Verification (CAV 22)34th International Conference on Computer Aided Verification (CAV 22)

Conference / Medium

LICS
37th Annual ACM/IEEE Symposium on Logic in Computer Science37th Annual ACM/IEEE Symposium on Logic in Computer Science

Teaching by Bernd Finkbeiner

Winter 2021/22

Verification

Core Lecture Course (9 CP)

Lectures: Tuesday 2 to 4 pm and Thursday 10 am to 12 noon in HS001, E1 3.
Tutorials: Friday 10 am to 12 noon and Friday 12 noon to 2 pm in Room 206, E1 1.
Office Hour: Wednesday 10 am to 12 noon in Room 106, E1 1.

There will be an option to attend the lectures, tutorials and Office Hour remotely.

 

Syllabus

How can one ensure that computer programs actually do what they are intended to do? Simply running a program repeatedly with various inputs is inadequate, because one cannot tell which inputs might cause the program to fail. It is possible to tailor a tester to test a given program, but present-day programs are so complex that they cannot be adequately checked through conventional testing, which can leave significant bugs undetected. Program verification uses mathematical and logical methods to prove that a program is correct. This approach was pioneered by, among others, Dijkstra, Floyd, Gries, Hoare, Lamport, Manna, Owicki and Pnueli. Today, we have powerful decision procedures that can, completely automatically, answer basic questions about the data types typically used by programmers. Model Checking is a “push-button” technology that can analyze finite-state abstractions of programs with as many as 1020 states. This course takes an up-to-date look at the theory and practice of program verification.

Recommended Reading

  • Christel Baier, Joost-Pieter Katoen: Principles of Model Checking, 2008.
  • Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron Peled, Helmut Veith: Model Checking, 2018.
  • Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, Roderick Bloem: Handbook of Model Checking, 2018 (available on Springer Link).
  • Aaron R. Bradley and Zohar Manna: The Calculus of Computation, 2007 (available on Springer Link).
2020

Neural-Symbolic Computing

In this seminar, we will explore new research that shows that deep neural networks are, in fact, able to reason on “symbolic systems”, i.e., systems that are built with symbols like programming languages or formal logics.

2019/20

Verification

This course takes an up-to-date look at the theory and practice of program verification.

More information