E-mail senden E-Mail Adresse kopieren
2024-02-20

Learning Broadcast Protocols

Zusammenfassung

The problem of learning a computational model from examples has been receiving growing attention. For the particularly challenging problem of learning models of distributed systems, existing results are restricted to models with a fixed number of interacting processes. In this work we look for the first time (to the best of our knowledge) at the problem of learning a distributed system with an arbitrary number of processes, assuming only that there exists a cutoff, i.e., a number of processes that is sufficient to produce all observable behaviors. Specifically, we consider fine broadcast protocols, these are broadcast protocols (BPs) with a finite cutoff and no hidden states. We provide a learning algorithm that can infer a correct BP from a sample that is consistent with a fine BP, and a minimal equivalent BP if the sample is sufficiently complete. On the negative side we show that (a) characteristic sets of exponential size are unavoidable, (b) the consistency problem for fine BPs is NP hard, and (c) that fine BPs are not polynomially predictable.

Konferenzbeitrag

National Conference of the American Association for Artificial Intelligence (AAAI)

Veröffentlichungsdatum

2024-02-20

Letztes Änderungsdatum

2024-12-11